当前位置: 首页>>代码示例>>Python>>正文


Python SR.outputReconstructedAdjacencies方法代码示例

本文整理汇总了Python中SR.outputReconstructedAdjacencies方法的典型用法代码示例。如果您正苦于以下问题:Python SR.outputReconstructedAdjacencies方法的具体用法?Python SR.outputReconstructedAdjacencies怎么用?Python SR.outputReconstructedAdjacencies使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SR的用法示例。


在下文中一共展示了SR.outputReconstructedAdjacencies方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: runSample

# 需要导入模块: import SR [as 别名]
# 或者: from SR import outputReconstructedAdjacencies [as 别名]
def runSample(params):
        #retrieving the given parameter
        ccs=params[0]
        tree=params[1]
        extantAdjacencies=params[2]
        adjacencyProbs=params[3]
        alpha=params[4]
        i=params[5]
        extantAdjacencies_species_adj=params[6]
        outputDirectory=params[7]
        reconstructedMarkerCount=params[8]
        allSampleReconstructionStatistic={}
        dict_SCJ={}
        #lock = multiprocessing.Lock()
        #output text log
        outLog="Sample: "+str(i)+"\n"

        #start sampling method like in the Main.py
        outLog+="Enumerate joint labelings...\n"
        jointLabels, first = SR.enumJointLabelings(ccs)
        outLog+="Check valid labels...\n"
        validLabels, validAtNode = SR.validLabels(jointLabels, first)

        #lock.acquire()
        outLog+= "Compute ancestral labels with SR...\n"
        topDown = SR.sampleLabelings(tree, ccs, validAtNode, extantAdjacencies, adjacencyProbs, alpha)
        #lock.release()
        reconstructedAdj = SR.reconstructedAdjacencies(topDown)
        SR.outputReconstructedAdjacencies(reconstructedAdj, outputDirectory+"/reconstructed_adjacencies_" + str(i))

        for node in reconstructedAdj:
            # count for each adjaency on each internal node, how often this adjacencies over all samples occurs there
            for adjacency in reconstructedAdj[node]:
                #lock.acquire()
                if (node,adjacency) in allSampleReconstructionStatistic:
                    allSampleReconstructionStatistic[(node,adjacency)] += 1
                else:
                    allSampleReconstructionStatistic.update({(node,adjacency):1})
                #lock.release()
        outLog+="Scaffolding...\n"
        scaffolds = scaffolding.scaffoldAdjacencies(reconstructedAdj)
        undoubled = scaffolding.undoubleScaffolds(scaffolds)
        scaffolding.outputUndoubledScaffolds(undoubled, outputDirectory+"/undoubled_scaffolds_" + str(i))
        scaffolding.outputScaffolds(scaffolds, outputDirectory+"/doubled_scaffolds_" + str(i))
        log=scaffolding.sanityCheckScaffolding(undoubled)
        outLog+=log
        for node in undoubled:
            outLog+= str(node)+'\n'
            markerCounter = 0
            for scaffold in undoubled[node]:
                first = scaffold[0]
                last = scaffold[-1]
                if not first == last:
                    markerCounter = markerCounter + len(scaffold)
                else:
                    markerCounter = markerCounter + len(scaffold) - 1
            outLog+= str(node) + " number of reconstructed undoubled marker in scaffolds: " + str(markerCounter)+'\n'
            # number of reconstructed markerIds given by reconstructedMarkerCount
            # singleton scaffolds number / number of not reconstructed marker
            notReconstructedMarkerCount = reconstructedMarkerCount - markerCounter
            # number of all scaffolds
            allScaffoldCount = len(undoubled[node]) + notReconstructedMarkerCount
            outLog+= str(node) + " number of singleton scaffolds (not reconstructed marker): " + str(
                notReconstructedMarkerCount)+'\n'
            outLog+= str(node) + " number of scaffolds: " + str(allScaffoldCount)+'\n'


        #lock.acquire()
        scj = calculate_SCJ(tree, reconstructedAdj, extantAdjacencies_species_adj)
        outLog+="Single-Cut-or-Join-Distance: " + str(scj)+'\n'
        dict_SCJ.update({'Sample_' + str(i): scj})
        #lock.release()
        return (allSampleReconstructionStatistic,dict_SCJ,outLog)
开发者ID:nluhmann,项目名称:PhySca,代码行数:75,代码来源:runSample.py

示例2: set

# 需要导入模块: import SR [as 别名]
# 或者: from SR import outputReconstructedAdjacencies [as 别名]
#dictionary for all scj distances
dict_SCJ={}

#compute CCs in global adjacency graph
ccs = globalAdjacencyGraph.createGraph(extantAdjacencies,nodesPerAdjacency)
if (not args.skip_first):
    conflicts = globalAdjacencyGraph.analyseConnectedComponents(ccs)
    globalAdjacencyGraph.outputConflicts(conflicts,args.output+"/conflicts")

    jointLabels, first = SR.enumJointLabelings(ccs)
    validLabels, validAtNode = SR.validLabels(jointLabels,first)

    topDown = SR.computeLabelings(tree, ccs, validAtNode, extantAdjacencies, adjacencyProbs, args.alpha)

    reconstructedAdj = SR.reconstructedAdjacencies(topDown)
    SR.outputReconstructedAdjacencies(reconstructedAdj,args.output+"/reconstructed_adjacencies")
    for node in reconstructedAdj:
        print node
        print "Number of reconstructed adjacencies: "+str(len(reconstructedAdj[node]))

    scaffolds = scaffolding.scaffoldAdjacencies(reconstructedAdj)
    undoubled = scaffolding.undoubleScaffolds(scaffolds)
    scaffolding.outputUndoubledScaffolds(undoubled,args.output+"/undoubled_scaffolds")
    scaffolding.outputScaffolds(scaffolds,args.output+"/doubled_scaffolds")
    scaffolding.sanityCheckScaffolding(undoubled)

    # reconstruct marker pairs out of extantAdjacencies
    reconstructedMarker = set()
    for adj in extantAdjacencies:
        #each adjacency equals to markerpairs
        adj_list=[ adj[0], adj[1] ]
开发者ID:nluhmann,项目名称:PhySca,代码行数:33,代码来源:Main.py


注:本文中的SR.outputReconstructedAdjacencies方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。