本文整理汇总了Python中SR.get_digit_feature_from_continuous_speech方法的典型用法代码示例。如果您正苦于以下问题:Python SR.get_digit_feature_from_continuous_speech方法的具体用法?Python SR.get_digit_feature_from_continuous_speech怎么用?Python SR.get_digit_feature_from_continuous_speech使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SR
的用法示例。
在下文中一共展示了SR.get_digit_feature_from_continuous_speech方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_transform_relationship_FSM_table
# 需要导入模块: import SR [as 别名]
# 或者: from SR import get_digit_feature_from_continuous_speech [as 别名]
def get_transform_relationship_FSM_table(filename, states_in_each_word=5, using_continuous_feature=0, **kwargs):
"""
从有限状态机中获取模板,状态转移列表,起始状态,每个nonemitting state所对应的emitting state 在模板中连续
:param filename: 有限状态机文件名
:param states_in_each_word: 每个单词有多少states组成
:param kwargs:
:return: template,states的模板
transform_list,第i个元素为列表,代表第i个state可以从哪些states进入
begin_list,t=0时可进入的states
word_in_template,第i个表示template中第i个元素代表的word
"""
start_states, terminal_states, nonemitting_transform_list = get_info_FSM_table(filename)
number_of_nonemitting_states = len(nonemitting_transform_list)
template = []
digit_template = [] # 第i个值表示数字i的template
number_of_frames_in_each_state = [] # 第i个元素代表state i的frame数
number_of_frames_in_each_state_for_digit = [] # 第i个元素代表数字i中每个state拥有的frame数量
covariance_matrix_in_each_state = []
mean_in_each_state = []
covariance_matrix_for_each_digit = []
mean_for_each_digit = []
word_in_template = [] # 第i个表示template中第i个元素代表的word
if using_continuous_feature:
digit_template = SR.get_digit_feature_from_continuous_speech()
for digit in xrange(0, 10):
temp = SR.get_templates_and_inputs(digit, number_of_templates=10)
if not using_continuous_feature:
result = kmeans.k_means(temp[0], number_of_states=5)
digit_template.extend(result[0])
covariance_matrix_for_each_digit.append(result[2])
mean_for_each_digit.append(result[3])
temp_number_of_frames_in_each_state = [0 for i in xrange(states_in_each_word)]
for number_of_frames_in_each_state_in_each_template in result[5]:
for i in xrange(states_in_each_word):
temp_number_of_frames_in_each_state[i] += number_of_frames_in_each_state_in_each_template[i]
number_of_frames_in_each_state_for_digit.append(temp_number_of_frames_in_each_state)
# print number_of_frames_in_each_state
# 获取number_of_emitting_states_begin_from_nonemitting_states
number_of_emitting_states_begin_from_nonemitting_states = [] # 第i个元素表示源于第i个nonemitting_state的edge包含的states个数
for nonemitting_state in nonemitting_transform_list:
# nonemitting_state形如{1: [2, 3, 4, 5, 6, 7, 8, 9], 3: []}
temp = []
for edge_list in nonemitting_state.values():
temp.extend(edge_list)
for i in temp:
# 获取template
covariance_matrix_in_each_state.extend(covariance_matrix_for_each_digit[i])
mean_in_each_state.extend(mean_for_each_digit[i])
number_of_frames_in_each_state.extend(number_of_frames_in_each_state_for_digit[i])
template.extend(digit_template[i])
word_in_template.append(i)
number_of_emitting_states = len(set(temp))
number_of_emitting_states_begin_from_nonemitting_states.append(number_of_emitting_states)
# 获取begin_states_index_for_each_nonemitting_state
begin_states_index_for_each_nonemitting_state = [] # 第i个元素表示源于第i个nonemitting_state的edge包含的states之前有多少states
for i in xrange(number_of_nonemitting_states):
begin_states_index_for_each_nonemitting_state.append(
sum(number_of_emitting_states_begin_from_nonemitting_states[:i]))
# 获取emitting_out_list,第i个元素为一个列表,代表第i个nonemitting state可以进入的states
emitting_out_list = [[] for i in xrange(number_of_nonemitting_states)]
for i, nonemitting_state in enumerate(nonemitting_transform_list):
# nonemitting_state形如{1: [2, 3, 4, 5, 6, 7, 8, 9], 3: []}
begin_index = begin_states_index_for_each_nonemitting_state[i]
number_of_edges = sum(map(len, nonemitting_state.values()))
for j in xrange(number_of_edges):
emitting_out_list[i].append(states_in_each_word * (begin_index + j))
changed = True
# 考虑无条件跳转的情况
while changed:
new_emitting_out_list = emitting_out_list[:]
for i, nonemitting_state in enumerate(nonemitting_transform_list):
for key in nonemitting_state.keys():
if nonemitting_state[key] == []:
new_emitting_out_list[i].extend(new_emitting_out_list[key])
changed = (new_emitting_out_list != emitting_out_list)
emitting_out_list = new_emitting_out_list
# 获取emitting_in_list,第i个元素为一个列表,代表第i个nonemitting state可以由哪些states进入
emitting_in_list = [[] for i in xrange(number_of_nonemitting_states)]
for i, nonemitting_state in enumerate(nonemitting_transform_list):
# nonemitting_state形如{1: [2, 3, 4, 5, 6, 7, 8, 9], 3: []}
begin_index = begin_states_index_for_each_nonemitting_state[i]
j = 0
for key in nonemitting_state.keys():
for value in nonemitting_state[key]:
emitting_in_list[key].append(states_in_each_word * (begin_index + j))
j += 1
changed = True
# 考虑无条件跳转的情况
while changed:
new_emitting_in_list = emitting_in_list[:]
for i, nonemitting_state in enumerate(nonemitting_transform_list):
for key in nonemitting_state.keys():
if nonemitting_state[key] == []:
new_emitting_in_list[key].extend(new_emitting_in_list[i])
changed = (new_emitting_in_list != emitting_in_list)
emitting_in_list = new_emitting_in_list
# 计算transform_list,每个元素为一个列表,表示可以进入这个state的states
transform_list = [[] for i in
xrange(sum(number_of_emitting_states_begin_from_nonemitting_states) * states_in_each_word)]
for i in xrange(number_of_nonemitting_states):
#.........这里部分代码省略.........
开发者ID:awesome-archive,项目名称:SpeechRecognitionSystem,代码行数:103,代码来源:continuous_speech_recognition_using_FSM.py