本文整理汇总了Python中PyTorch.manualSeed方法的典型用法代码示例。如果您正苦于以下问题:Python PyTorch.manualSeed方法的具体用法?Python PyTorch.manualSeed怎么用?Python PyTorch.manualSeed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PyTorch
的用法示例。
在下文中一共展示了PyTorch.manualSeed方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_double_tensor
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_double_tensor():
PyTorch.manualSeed(123)
LongTensor = PyTorch.LongTensor
DoubleTensor = PyTorch.DoubleTensor
print("dir(G)", dir())
print("test_double_tensor")
a = PyTorch.DoubleTensor(3, 2)
print("got double a")
myeval("a.dims()")
a.uniform()
myeval("a")
myexec("a[1][1] = 9")
myeval("a")
myeval("a.size()")
myeval("a + 2")
myexec("a.resize2d(3,3).fill(1)")
myeval("a")
myexec("size = LongTensor(2)")
myexec("size[0] = 4")
myexec("size[1] = 2")
myexec("a.resize(size)")
myeval("a")
myeval("DoubleTensor(3,4).uniform()")
myeval("DoubleTensor(3,4).bernoulli()")
myeval("DoubleTensor(3,4).normal()")
myeval("DoubleTensor(3,4).cauchy()")
myeval("DoubleTensor(3,4).exponential()")
myeval("DoubleTensor(3,4).logNormal()")
myeval("DoubleTensor(3,4).geometric()")
示例2: test_double_tensor
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_double_tensor():
PyTorch.manualSeed(123)
LongTensor = PyTorch.LongTensor
DoubleTensor = PyTorch.DoubleTensor
LongStorage = PyTorch.LongStorage
print('LongStorage', LongStorage)
print('LongTensor', LongTensor)
print('DoubleTensor', DoubleTensor)
print('dir(G)', dir())
print('test_double_tensor')
a = PyTorch.DoubleTensor(3, 2)
print('got double a')
myeval('a.dims()')
a.uniform()
myeval('a')
myexec('a[1][1] = 9')
myeval('a')
myeval('a.size()')
myeval('a + 2')
myexec('a.resize2d(3,3).fill(1)')
myeval('a')
myexec('size = LongStorage(2)')
myexec('size[0] = 4')
myexec('size[1] = 2')
myexec('a.resize(size)')
myeval('a')
myeval('DoubleTensor(3,4).uniform()')
myeval('DoubleTensor(3,4).bernoulli()')
myeval('DoubleTensor(3,4).normal()')
myeval('DoubleTensor(3,4).cauchy()')
myeval('DoubleTensor(3,4).exponential()')
myeval('DoubleTensor(3,4).logNormal()')
myeval('DoubleTensor(3,4).geometric()')
示例3: test_byte_tensor
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_byte_tensor():
PyTorch.manualSeed(123)
print('test_byte_tensor')
a = PyTorch.ByteTensor(3,2).geometric()
myeval('a')
myexec('a[1][1] = 9')
myeval('a')
myeval('a.size()')
myeval('a + 2')
myexec('a.resize2d(3,3).fill(1)')
myeval('a')
示例4: test_float_tensor
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_float_tensor():
PyTorch.manualSeed(123)
print('dir(G)', dir())
print('test_float_tensor')
a = PyTorch.FloatTensor(3, 2)
print('got float a')
myeval('a.dims()')
a.uniform()
myeval('a')
myexec('a[1][1] = 9')
myeval('a')
myeval('a.size()')
示例5: test_pynn
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_pynn():
PyTorch.manualSeed(123)
linear = Linear(3, 5)
linear
print('linear', linear)
print('linear.weight', linear.weight)
print('linear.output', linear.output)
print('linear.gradInput', linear.gradInput)
input = PyTorch.DoubleTensor(4, 3).uniform()
print('input', input)
output = linear.updateOutput(input)
print('output', output)
gradInput = linear.updateGradInput(input, output)
print('gradInput', gradInput)
criterion = ClassNLLCriterion()
print('criterion', criterion)
print('dir(linear)', dir(linear))
mlp = Sequential()
mlp.add(linear)
output = mlp.forward(input)
print('output', output)
import sys
sys.path.append('thirdparty/python-mnist')
from mnist import MNIST
import numpy
import array
numpy.random.seed(123)
mlp = Sequential()
linear = Linear(784, 10)
mlp.add(linear)
logSoftMax = LogSoftMax()
mlp.add(logSoftMax)
mlp
criterion = ClassNLLCriterion()
print('got criterion')
learningRate = 0.0001
mndata = MNIST('/norep/data/mnist')
imagesList, labelsB = mndata.load_training()
images = numpy.array(imagesList).astype(numpy.float64)
#print('imagesArray', images.shape)
#print(images[0].shape)
labelsf = array.array('d', labelsB.tolist())
imagesTensor = PyTorch.asDoubleTensor(images)
#imagesTensor = PyTorch.FloatTensor(100,784)
#labels = numpy.array(20,).astype(numpy.int32)
#labelsTensor = PyTorch.FloatTensor(100).fill(1)
#print('labels', labels)
#print(imagesTensor.size())
def printStorageAddr(name, tensor):
print('printStorageAddr START')
storage = tensor.storage()
if storage is None:
print(name, 'storage is None')
else:
print(name, 'storage is ', hex(storage.dataAddr()))
print('printStorageAddr END')
labelsTensor = PyTorch.asDoubleTensor(labelsf)
labelsTensor += 1
#print('calling size on imagestensor...')
#print(' (called size)')
desiredN = 128
maxN = int(imagesTensor.size()[0])
desiredN = min(maxN, desiredN)
imagesTensor = imagesTensor.narrow(0, 0, desiredN)
labelsTensor = labelsTensor.narrow(0, 0, desiredN)
print('imagesTensor.size()', imagesTensor.size())
print('labelsTensor.size()', labelsTensor.size())
N = int(imagesTensor.size()[0])
print('type(imagesTensor)', type(imagesTensor))
print('start training...')
for epoch in range(4):
numRight = 0
for n in range(N):
# print('n', n)
input = imagesTensor[n]
label = labelsTensor[n]
labelTensor = PyTorch.DoubleTensor(1)
labelTensor[0] = label
# print('label', label)
output = mlp.forward(input)
prediction = PyTorch.getDoublePrediction(output)
#.........这里部分代码省略.........
示例6: test_pytorchLong
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_pytorchLong():
PyTorch.manualSeed(123)
numpy.random.seed(123)
LongTensor = PyTorch.LongTensor
D = PyTorch.LongTensor(5,3).fill(1)
print('D', D)
D[2][2] = 4
print('D', D)
D[3].fill(9)
print('D', D)
D.narrow(1,2,1).fill(0)
print('D', D)
print(PyTorch.LongTensor(3,4).bernoulli())
print(PyTorch.LongTensor(3,4).geometric())
print(PyTorch.LongTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.LongTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.LongTensor(3,4).geometric())
print(type(PyTorch.LongTensor(2,3)))
size = PyTorch.LongStorage(2)
size[0] = 4
size[1] = 3
D.resize(size)
print('D after resize:\n', D)
print('resize1d', PyTorch.LongTensor().resize1d(3).fill(1))
print('resize2d', PyTorch.LongTensor().resize2d(2, 3).fill(1))
print('resize', PyTorch.LongTensor().resize(size).fill(1))
D = PyTorch.LongTensor(size).geometric()
# def myeval(expr):
# print(expr, ':', eval(expr))
# def myexec(expr):
# print(expr)
# exec(expr)
myeval('LongTensor(3,2).nElement()')
myeval('LongTensor().nElement()')
myeval('LongTensor(1).nElement()')
A = LongTensor(3,4).geometric(0.9)
myeval('A')
myexec('A += 3')
myeval('A')
myexec('A *= 3')
myeval('A')
myexec('A -= 3')
myeval('A')
myexec('A /= 3')
myeval('A')
myeval('A + 5')
myeval('A - 5')
myeval('A * 5')
myeval('A / 2')
B = LongTensor().resizeAs(A).geometric(0.9)
myeval('B')
myeval('A + B')
myeval('A - B')
myexec('A += B')
myeval('A')
myexec('A -= B')
myeval('A')
示例7: test_pytorchFloat
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_pytorchFloat():
PyTorch.manualSeed(123)
numpy.random.seed(123)
FloatTensor = PyTorch.FloatTensor
A = numpy.random.rand(6).reshape(3,2).astype(numpy.float32)
B = numpy.random.rand(8).reshape(2,4).astype(numpy.float32)
C = A.dot(B)
print('C', C)
print('calling .asTensor...')
tensorA = PyTorch.asFloatTensor(A)
tensorB = PyTorch.asFloatTensor(B)
print(' ... asTensor called')
print('tensorA', tensorA)
tensorA.set2d(1, 1, 56.4)
tensorA.set2d(2, 0, 76.5)
print('tensorA', tensorA)
print('A', A)
print('add 5 to tensorA')
tensorA += 5
print('tensorA', tensorA)
print('A', A)
print('add 7 to tensorA')
tensorA2 = tensorA + 7
print('tensorA2', tensorA2)
print('tensorA', tensorA)
tensorAB = tensorA * tensorB
print('tensorAB', tensorAB)
print('A.dot(B)', A.dot(B))
print('tensorA[2]', tensorA[2])
D = PyTorch.FloatTensor(5,3).fill(1)
print('D', D)
D[2][2] = 4
print('D', D)
D[3].fill(9)
print('D', D)
D.narrow(1,2,1).fill(0)
print('D', D)
print(PyTorch.FloatTensor(3,4).uniform())
print(PyTorch.FloatTensor(3,4).normal())
print(PyTorch.FloatTensor(3,4).cauchy())
print(PyTorch.FloatTensor(3,4).exponential())
print(PyTorch.FloatTensor(3,4).logNormal())
print(PyTorch.FloatTensor(3,4).bernoulli())
print(PyTorch.FloatTensor(3,4).geometric())
print(PyTorch.FloatTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.FloatTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.FloatTensor(3,4).geometric())
print(type(PyTorch.FloatTensor(2,3)))
size = PyTorch.LongStorage(2)
size[0] = 4
size[1] = 3
D.resize(size)
print('D after resize:\n', D)
print('resize1d', PyTorch.FloatTensor().resize1d(3).fill(1))
print('resize2d', PyTorch.FloatTensor().resize2d(2, 3).fill(1))
print('resize', PyTorch.FloatTensor().resize(size).fill(1))
D = PyTorch.FloatTensor(size).geometric()
# def myeval(expr):
# print(expr, ':', eval(expr))
# def myexec(expr):
# print(expr)
# exec(expr)
myeval('FloatTensor(3,2).nElement()')
myeval('FloatTensor().nElement()')
myeval('FloatTensor(1).nElement()')
A = FloatTensor(3,4).geometric(0.9)
myeval('A')
myexec('A += 3')
myeval('A')
myexec('A *= 3')
#.........这里部分代码省略.........
示例8: test_cltorch
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
def test_cltorch():
if "ALLOW_NON_GPUS" in os.environ:
PyClTorch.setAllowNonGpus(True)
# a = PyTorch.foo(3,2)
# print('a', a)
# print(PyTorch.FloatTensor(3,2))
a = PyClTorch.ClTensor([3, 4, 9])
assert a[0] == 3
assert a[1] == 4
assert a[2] == 9
print("a", a)
a = PyClTorch.ClTensor([[3, 5, 7], [9, 2, 4]])
print("a", a)
print("a[0]", a[0])
print("a[0][0]", a[0][0])
assert a[0][0] == 3
assert a[1][0] == 9
assert a[1][2] == 4
PyTorch.manualSeed(123)
a = PyTorch.FloatTensor(4, 3).uniform()
print("a", a)
a_cl = a.cl()
print(type(a_cl))
assert str(type(a_cl)) == "<class 'PyClTorch.ClTensor'>"
print("a_cl[0]", a_cl[0])
print("a_cl[0][0]", a_cl[0][0])
assert a[0][0] == a_cl[0][0]
assert a[0][1] == a_cl[0][1]
assert a[1][1] == a_cl[1][1]
print("a.dims()", a.dims())
print("a.size()", a.size())
print("a", a)
assert a.dims() == 2
assert a.size()[0] == 4
assert a.size()[1] == 3
a_sum = a.sum()
a_cl_sum = a_cl.sum()
assert abs(a_sum - a_cl_sum) < 1e-4
a_cl2 = a_cl + 3.2
assert abs(a_cl2[1][0] - a[1][0] - 3.2) < 1e-4
b = PyClTorch.ClTensor()
print("got b")
myeval("b")
assert b.dims() == -1
b.resizeAs(a)
myeval("b")
assert b.dims() == 2
assert b.size()[0] == 4
assert b.size()[1] == 3
print("run uniform")
b.uniform()
myeval("b")
print("create new b")
b = PyClTorch.ClTensor()
print("b.dims()", b.dims())
print("b.size()", b.size())
print("b", b)
c = PyTorch.FloatTensor().cl()
print("c.dims()", c.dims())
print("c.size()", c.size())
print("c", c)
assert b.dims() == -1
assert b.size() is None
print("creating Linear...")
linear = nn.Linear(3, 5).float()
print("created linear")
print("linear:", linear)
myeval("linear.output")
myeval("linear.output.dims()")
myeval("linear.output.size()")
myeval("linear.output.nElement()")
linear_cl = linear.clone().cl()
print("type(linear.output)", type(linear.output))
print("type(linear_cl.output)", type(linear_cl.output))
assert str(type(linear.output)) == "<class 'PyTorch._FloatTensor'>"
assert str(type(linear_cl.output)) == "<class 'PyClTorch.ClTensor'>"
# myeval('type(linear)')
# myeval('type(linear.output)')
myeval("linear_cl.output.dims()")
myeval("linear_cl.output.size()")
# myeval('linear.output')
assert str(type(linear)) == "<class 'PyTorchAug.Linear'>"
assert str(type(linear_cl)) == "<class 'PyTorchAug.Linear'>"
# assert str(type(linear.output)) == '<class \'PyClTorch.ClTensor\'>'
# assert linear.output.dims() == -1 # why is this 0? should be -1???
# assert linear.output.size() is None # again, should be None?
a_cl = PyClTorch.ClTensor(4, 3).uniform()
# print('a_cl', a_cl)
#.........这里部分代码省略.........
示例9: print
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import manualSeed [as 别名]
{%- set types = [
{'Real': 'Long','real': 'long'},
{'Real': 'Float', 'real': 'float'},
{'Real': 'Double', 'real': 'double'},
{'Real': 'Byte', 'real': 'unsigned char'}
]
%}
{% for typedict in types -%}
{%- set Real = typedict['Real'] -%}
{%- set real = typedict['real'] -%}
def test_pytorch{{Real}}():
PyTorch.manualSeed(123)
numpy.random.seed(123)
{{Real}}Tensor = PyTorch.{{Real}}Tensor
{% if Real == 'Float' -%}
A = numpy.random.rand(6).reshape(3, 2).astype(numpy.float32)
B = numpy.random.rand(8).reshape(2, 4).astype(numpy.float32)
C = A.dot(B)
print('C', C)
print('calling .asTensor...')
tensorA = PyTorch.asFloatTensor(A)
tensorB = PyTorch.asFloatTensor(B)
print(' ... asTensor called')