本文整理汇总了Python中PyTorch.asFloatTensor方法的典型用法代码示例。如果您正苦于以下问题:Python PyTorch.asFloatTensor方法的具体用法?Python PyTorch.asFloatTensor怎么用?Python PyTorch.asFloatTensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PyTorch
的用法示例。
在下文中一共展示了PyTorch.asFloatTensor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_call_lua
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import asFloatTensor [as 别名]
def test_call_lua():
TestCallLua = PyTorchHelpers.load_lua_class('test/test_call_lua.lua', 'TestCallLua')
batchSize = 2
numFrames = 4
inSize = 3
outSize = 3
kernelSize = 3
luabit = TestCallLua('green')
print(luabit.getName())
assert luabit.getName() == 'green'
print('type(luabit)', type(luabit))
assert str(type(luabit)) == '<class \'PyTorchLua.TestCallLua\'>'
np.random.seed(123)
inTensor = np.random.randn(batchSize, numFrames, inSize).astype('float32')
luain = PyTorch.asFloatTensor(inTensor)
luaout = luabit.getOut(luain, outSize, kernelSize)
outTensor = luaout.asNumpyTensor()
print('outTensor', outTensor)
# I guess we just assume if we got to this point, with no exceptions, then thats a good thing...
# lets add some new test...
outTensor = luabit.addThree(luain).asNumpyTensor()
assert isinstance(outTensor, np.ndarray)
assert inTensor.shape == outTensor.shape
assert np.abs((inTensor + 3) - outTensor).max() < 1e-4
res = luabit.printTable({'color': 'red', 'weather': 'sunny', 'anumber': 10, 'afloat': 1.234}, 'mistletoe', {
'row1': 'col1', 'meta': 'data'})
print('res', res)
assert res == {'foo': 'bar', 'result': 12.345, 'bear': 'happy'}
# List and tuple support by conversion to dictionary
reslist = luabit.modifyList([3.1415, r'~Python\omega', 42])
restuple = luabit.modifyList((3.1415, r'~Python\omega', 42))
assert len(reslist) == len(restuple) == 4
assert list(reslist.keys()) == list(restuple.keys()) == [1, 2, 3, 4]
assert reslist[1] == restuple[1]
assert (reslist[1] - 3.1415) < 1e-7
reslist.pop(1)
restuple.pop(1)
assert reslist == restuple == {2: r'~Python\omega', 3: 42, 4: 'Lorem Ipsum'}
# Get an object created from scratch by Lua
res = luabit.getList()
assert res[1] == 3.1415
res.pop(1)
assert res == {2: 'Lua', 3: 123}
示例2: test_save_load
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import asFloatTensor [as 别名]
def test_save_load():
np.random.seed(123)
a_np = np.random.randn(3, 2).astype(np.float32)
a = PyTorch.asFloatTensor(a_np)
print('a', a)
filename = '/tmp/foo.t7' # TODO: should use tempfile to get this
PyTorchAug.save(filename, a)
b = PyTorchAug.load(filename)
print('type(b)', type(b))
print('b', b)
assert np.abs(a_np - b.asNumpyTensor()).max() < 1e-4
示例3: Luabit
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import asFloatTensor [as 别名]
import sys
import os
import PyTorch
import PyTorchHelpers
import numpy as np
Luabit = PyTorchHelpers.load_lua_class('luabit.lua', 'Luabit')
batchSize = 2
numFrames = 4
inSize = 3
outSize = 3
kernelSize = 3
luabit = Luabit('green')
print(luabit.getName())
print('type(luabit)', type(luabit))
inTensor = np.random.randn(batchSize, numFrames, inSize).astype('float32')
luain = PyTorch.asFloatTensor(inTensor)
luaout = luabit.getOut(luain, outSize, kernelSize)
outTensor = luaout.asNumpyTensor()
print('outTensor', outTensor)
res = luabit.printTable({'color': 'red', 'weather': 'sunny', 'anumber': 10, 'afloat': 1.234}, 'mistletoe', {
'row1': 'col1', 'meta': 'data'})
print('res', res)
示例4: test_pytorchFloat
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import asFloatTensor [as 别名]
def test_pytorchFloat():
PyTorch.manualSeed(123)
numpy.random.seed(123)
FloatTensor = PyTorch.FloatTensor
A = numpy.random.rand(6).reshape(3,2).astype(numpy.float32)
B = numpy.random.rand(8).reshape(2,4).astype(numpy.float32)
C = A.dot(B)
print('C', C)
print('calling .asTensor...')
tensorA = PyTorch.asFloatTensor(A)
tensorB = PyTorch.asFloatTensor(B)
print(' ... asTensor called')
print('tensorA', tensorA)
tensorA.set2d(1, 1, 56.4)
tensorA.set2d(2, 0, 76.5)
print('tensorA', tensorA)
print('A', A)
print('add 5 to tensorA')
tensorA += 5
print('tensorA', tensorA)
print('A', A)
print('add 7 to tensorA')
tensorA2 = tensorA + 7
print('tensorA2', tensorA2)
print('tensorA', tensorA)
tensorAB = tensorA * tensorB
print('tensorAB', tensorAB)
print('A.dot(B)', A.dot(B))
print('tensorA[2]', tensorA[2])
D = PyTorch.FloatTensor(5,3).fill(1)
print('D', D)
D[2][2] = 4
print('D', D)
D[3].fill(9)
print('D', D)
D.narrow(1,2,1).fill(0)
print('D', D)
print(PyTorch.FloatTensor(3,4).uniform())
print(PyTorch.FloatTensor(3,4).normal())
print(PyTorch.FloatTensor(3,4).cauchy())
print(PyTorch.FloatTensor(3,4).exponential())
print(PyTorch.FloatTensor(3,4).logNormal())
print(PyTorch.FloatTensor(3,4).bernoulli())
print(PyTorch.FloatTensor(3,4).geometric())
print(PyTorch.FloatTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.FloatTensor(3,4).geometric())
PyTorch.manualSeed(3)
print(PyTorch.FloatTensor(3,4).geometric())
print(type(PyTorch.FloatTensor(2,3)))
size = PyTorch.LongStorage(2)
size[0] = 4
size[1] = 3
D.resize(size)
print('D after resize:\n', D)
print('resize1d', PyTorch.FloatTensor().resize1d(3).fill(1))
print('resize2d', PyTorch.FloatTensor().resize2d(2, 3).fill(1))
print('resize', PyTorch.FloatTensor().resize(size).fill(1))
D = PyTorch.FloatTensor(size).geometric()
# def myeval(expr):
# print(expr, ':', eval(expr))
# def myexec(expr):
# print(expr)
# exec(expr)
myeval('FloatTensor(3,2).nElement()')
myeval('FloatTensor().nElement()')
myeval('FloatTensor(1).nElement()')
A = FloatTensor(3,4).geometric(0.9)
myeval('A')
myexec('A += 3')
myeval('A')
myexec('A *= 3')
#.........这里部分代码省略.........
示例5: print
# 需要导入模块: import PyTorch [as 别名]
# 或者: from PyTorch import asFloatTensor [as 别名]
{%- set real = typedict['real'] -%}
def test_pytorch{{Real}}():
PyTorch.manualSeed(123)
numpy.random.seed(123)
{{Real}}Tensor = PyTorch.{{Real}}Tensor
{% if Real == 'Float' -%}
A = numpy.random.rand(6).reshape(3, 2).astype(numpy.float32)
B = numpy.random.rand(8).reshape(2, 4).astype(numpy.float32)
C = A.dot(B)
print('C', C)
print('calling .asTensor...')
tensorA = PyTorch.asFloatTensor(A)
tensorB = PyTorch.asFloatTensor(B)
print(' ... asTensor called')
print('tensorA', tensorA)
tensorA.set2d(1, 1, 56.4)
tensorA.set2d(2, 0, 76.5)
print('tensorA', tensorA)
print('A', A)
print('add 5 to tensorA')
tensorA += 5
print('tensorA', tensorA)
print('A', A)