本文整理汇总了Python中NN类的典型用法代码示例。如果您正苦于以下问题:Python NN类的具体用法?Python NN怎么用?Python NN使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了NN类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
def train(inputs, outputs, size, participants, victors, generations, threshold, cRate, mRate, printFile=False):
'''Create and start training the NN via evolution strategy. Selection, crossover, mutation, evaluation.'''
global hero
global OrigAnswers
OrigAnswers = copy.deepcopy(outputs)
EvaluationNN = GA.create_net(inputs, outputs)
population = init_pop(EvaluationNN, inputs, outputs, size)
# Test each citizen and determine initial fitness
GA.evaluate(EvaluationNN, population, inputs, outputs)
if printFile: f = open('ES.csv', 'w')
gen = 0
children = []
# loop until a hero is found or we've reached max generations
while gen <= generations and hero == 0:
# Select our parents using tournament selection
parents = GA.tournament(population, participants, victors)
# Have our parents mate (Crossover)
children = GA.mate(parents, cRate)
# Have the children experience the world (Mutate)
for child in children:
mutate(child, mRate)
# Test each child's fitness
GA.evaluate(EvaluationNN, children, inputs, outputs)
children = GA.tournament(children, participants, victors)
population = sorted(population + children,
key=itemgetter(-1))[:-victors]
if GA.heroFound(population, threshold):
break
else:
print("Training: {:2.2%}".format(
population[0][-1]), "{:2.2%} ".format(gen / generations), end="\r")
if printFile: f.write('%f,' % population[0][-1])
if printFile: f.write('\n')
gen += 1
if printFile: f.close()
if hero == 0:
gen -= 1
hero = sorted(population, key=itemgetter(-1))[0]
EvaluationNN.SetNNWeights(hero[:-1]) # Load hero into NN, prep for usage.
# Evaluate the hero on the inputs and outputs
print('Generations: %d' % gen, ' ' * 20)
print("Error Relative: {:2.5%}".format(NN.calcRelativeError(EvaluationNN, inputs, OrigAnswers)))
print("Least Squares: %d" % NN.calcLeastSquaresError(EvaluationNN, inputs, OrigAnswers))
print("Loss Squared: %d" % NN.calcLossSquared(EvaluationNN, inputs, OrigAnswers))
#for x in inputs:
# EvaluationNN.SetStartingNodesValues(x)
# EvaluationNN.CalculateNNOutputs()
# print(x, EvaluationNN.GetNNResults(), EvaluationNN.GetNNResultsInt(), OrigAnswers[inputs.index(x)])
print()
return EvaluationNN
示例2: start_thread
def start_thread(inp, activation, out_activ, outp, learn, thresh, mmntm, logger):
global count
training_inputs = []
training_data = []
count += 1
print(out_activ)
testNN = NN.main(inp, activation, out_activ, outp, learn, thresh, mmntm)
print("DONE TRAINING")
for i in inp:
for j in i:
training_inputs.append(random.randint(0, 4)) # create random inputs for testing
training_data.append(training_inputs)
training_inputs = []
logger.info("ACTIVATION SET: ")
logger.info(activation)
logger.info("OUTPUT ACTIVATION: %s" % out_activ)
logger.info("TESTING INPUT: ")
logger.info(training_data)
logger.info("OUTPUT: ")
for x in training_data:
testNN.SetStartingNodesValues(x)
testNN.CalculateNNOutputs()
logger.info(str(x))
logger.info(testNN.GetNNResults())
logger.info("RB OUTPUT: %s" % rb_test.rb_test(x))
示例3: evaluate
def evaluate(NNWorking, population, inputs, outputs):
'''Tests each citizen in the population against a NN topology with inputs
and outputs to generate an cumulitive fitness measurement, which should be
minimized'''
for citizen in population:
citizen[-1] = 0
NNWorking.SetNNWeights(citizen[:-1]) # Load weights into the NN
for i in range(len(inputs)):
NNWorking.SetStartingNodesValues(inputs[i]) # Load inputs into NN
NNWorking.CalculateNNOutputs() # Run the NN once
# Calculate the fitness value and let the citizen track it
# for j in range(len(NN.GetNNResults())):
# citizen[-1] += ((outputs[i][j] - NN.GetNNResults()[j]))**2
citizen[-1] += NN.calcRelativeError(NNWorking,
inputs, outputs) / len(inputs)
示例4: start_thread
def start_thread(inp, activation, out_activ, outp, learn, thresh, mmntm, logger):
global count
training_inputs = []
training_data = []
count += 1
testNN = NN.main(inp, activation, out_activ, outp, learn, thresh, mmntm)
print ("DONE TRAINING")
for i in inp:
for j in i:
training_inputs.append(random.randint(0,4)) #create random inputs for testing
training_data.append(training_inputs)
training_inputs = []
for x in training_data:
testNN.SetStartingNodesValues(x)
testNN.CalculateNNOutputs()
logger.info(str(x))
logger.info(testNN.GetNNResults())
示例5: train
def train(inputs, outputs, size, participants, victors,
generations, threshold, cRate, mRate, printFile=False):
'''The train method takes in a set of inputs and outputs which will be
compared against a hardcoded NN topology. The size, participants, and
victors are with regard to tournament selection and elitism selection
techniques. Generations is the max number of generations allowed while
threshold is the accuracy needed. cRate and mRate are the rate of
crossover and rate of mutation respectively. '''
global hero
global OrigAnswers
EvaluationNN = create_net(inputs, outputs)
population = generatePopulation(EvaluationNN, inputs, outputs, size)
# Test each citizen and determine initial fitness
evaluate(EvaluationNN, population, inputs, outputs)
if printFile: f = open('GA.csv', 'w')
gen = 0
children = []
# loop until a hero is found or we've reached max generations
while gen <= generations and hero == 0:
# Select our parents using tournament selection
parents = tournament(population, participants, victors)
# Have our parents mate (Crossover)
children = mate(parents, cRate)
# Have the children experience the world (Mutate)
for child in children:
mutate(child, mRate)
# Test each child's fitness
evaluate(EvaluationNN, children, inputs, outputs)
# We were to prolific, thus children must fight to the death via draft
# call. Make participants len(children) to have all of them fight
# This might not be a good idea as late generation counts result in not
# keeping the children.
children = tournament(children, participants, victors)
# purging of population is determined by elitism inverted on fitness
# level (cowardace is greater number).
# Take number of children equal to number of tournament victors and
# reintroduce to the population
population = sorted(population + children,
key=itemgetter(-1))[:-victors]
# Determine if a child is a hero (<threshold) and if so, return child
if heroFound(population, threshold):
break
else:
print("Training: {:2.2%}".format(
population[0][-1]), "{:2.2%} ".format(gen / generations), end="\r")
if printFile: f.write('%f,' % population[0][-1])
if printFile: f.write('\n')
gen += 1
# return best hero if max generations is met and hero hasn't been selected.
if printFile: f.close()
if hero == 0:
gen -= 1
hero = sorted(population, key=itemgetter(-1))[0]
EvaluationNN.SetNNWeights(hero[:-1]) # Load hero into NN, prep for usage.
# Evaluate the hero on the inputs and outputs
print('Generations: %d' % gen, ' ' * 20)
print("Error Relative: {:2.5%}".format(NN.calcRelativeError(EvaluationNN, inputs, OrigAnswers)))
print("Least Squares: %d" % NN.calcLeastSquaresError(EvaluationNN, inputs, OrigAnswers))
print("Loss Squared: %d" % NN.calcLossSquared(EvaluationNN, inputs, OrigAnswers))
#for x in inputs:
# EvaluationNN.SetStartingNodesValues(x)
# EvaluationNN.CalculateNNOutputs()
# print(x, EvaluationNN.GetNNResults(), EvaluationNN.GetNNResultsInt(), OrigAnswers[inputs.index(x)])
print()
return EvaluationNN
示例6: len
sample_dirs.sort()
if nsmpl != len(sample_dirs):
print '{0:*>20}: num_samples in in.fitpot is wrong.'.format(' Error')
exit()
read_pos()
#.....initial data
gather_ref_data(maindir)
#.....read bases data if needed
if potential in ('linreg') and not fmethod in ('test','TEST'):
read_bases(maindir)
if regularize:
vars= scale_vars(vars,bmax)
elif potential in ('NN') and not fmethod in ('test','TEST'):
NN.init(maindir,params,sample_dirs,samples,nprcs,fmatch \
,ergrefs,frcrefs,fmethod,parfile,runmode,rcut,pranges \
,vranges)
#.....1st call of func
func(vars,maindir)
if potential in ('linreg') and not fmethod in ('test','TEST'):
ergs,frcs= calc_ef_from_bases(vars,maindir)
elif potential in ('NN') and not fmethod in ('test','TEST'):
ergs,frcs= NN.calc_ef_from_bases(vars)
else:
ergs,frcs= gather_smd_data(maindir)
if fmethod in ('test','TEST') and potential in ('NN'):
NN.init(maindir,params,sample_dirs,samples,nprcs,fmatch \
,ergrefs,frcrefs,fmethod,parfile,runmode \
,rcut,pranges,vranges)
示例7: func
def func(x,*args):
"""evaluate function L=sum_{samples}[E(pmd)-E(ref)]^2.
This will be called from scipy.optimize.fmin_cg().
The 1st argument x should be 1-D array of variables.
"""
global _valmin
t0= time.time()
#.....write parameters to in.params.????? file
dir= args[0]
if fmethod in ('test','TEST','check_grad') or \
not potential in ('linreg','NN'):
#.....store original file
os.system('cp '+dir+'/'+parfile+' '+dir+'/'+parfile+'.tmp')
write_params(dir+'/'+parfile,x)
#.....run smd in all sample directories
os.chdir(dir)
#print os.getcwd(),dir
if runmode in ('serial','Serial','SERIAL','sequential','single'):
os.system('./serial_run_smd.sh '+parfile)
elif runmode in ('parallel','Parallel','PARALLEL'):
os.system('python ./parallel_run_smd.py '+parfile)
else:
print "{0:*>20}: no such run_mode !!!".format(' Error', runmode)
exit()
os.chdir(cwd)
#.....restore original file
os.system('cp '+dir+'/'+parfile+' '+dir+'/'+parfile+'.current')
os.system('cp '+dir+'/'+parfile+'.tmp'+' '+dir+'/'+parfile)
#.....gather smd results
ergs,frcs=gather_smd_data(dir)
elif potential in ('linreg'):
#.....calc ergs and frcs from bases data and x (variables)
read_bases(dir)
ergs,frcs=calc_ef_from_bases(x,*args)
elif potential in ('NN'):
#.....now it is possible to compute only from bases
ergs,frcs= NN.calc_ef_from_bases(x,*args)
#.....calc function value of L
val= eval_L(ergs,frcs,ergrefs,frcrefs,samples)
#.....output temporal results
output_energy_relation(ergs,ergrefs,samples,sample_dirs, \
fname='out.erg.pmd-vs-dft.tmp')
output_force_relation(frcs,frcrefs,samples,sample_dirs, \
fname='out.frc.pmd-vs-dft.tmp')
print
print ' L value=',val
if penalty in ('ridge','Ridge','RIDGE') and potential in ('linreg'):
p= 0.0
lx= len(x)
for n in range(lx):
p += math.sqrt(x[n]**2)
print ' penalty value=',p*pweight
val += p*pweight
print ' total L value=',val
elif penalty in ('lasso','LASSO') and potential in ('linreg'):
p= 0.0
lx= len(x)
for n in range(lx):
p += abs(x[n])
print ' penalty value=',p*pweight
val += p*pweight
print ' total L value=',val
sys.stdout.flush()
#.....if L value is minimum ever, store this parameter file
if val < _valmin:
_valmin= val
if potential in ('linreg','NN'):
write_params(dir+'/'+parfile+'.min',x)
else:
os.system('cp '+dir+'/'+parfile+'.current' \
+' '+dir+'/'+parfile+'.min')
print ' ===> time func: {0:12.3f} sec'.format(time.time()-t0) \
+', {0:12.3f} sec'.format(time.time()-_init_time)
return val
示例8: predictPollution
import weather
import NN as nn
get_pm5_prediction = nn.setup()
# SAMPLE usage, Delete before using it as library
def predictPollution(precipitation_prob, relative_humidity, temp, wind_direction, wind_speed):
O3PreictedVal = 5.03704930e+01 + (precipitation_prob * 9.66895471e-02) + (relative_humidity * -2.99780572e-03) + (temp * -2.26017118e-01) + (wind_direction * -8.96663780e-03) + (wind_speed * 9.98339351e+00)
PM25PredictedVal = 1.36006991e+01 + (temp * -9.32461073e-02) + (wind_direction * -3.35510810e-04) + (wind_speed * -7.50369156e-01)
nnPrediction = get_pm5_prediction(TMP = temp,WDIR = wind_direction,WSPD = wind_speed)
#3.6 is average
if abs(nnPrediction - PM25PredictedVal) > 7.2:
if abs(nnPrediction - 3.6) > abs(PM25PredictedVal - 3.6):
return O3PreictedVal, PM25PredictedVal
else:
return O3PreictedVal, nnPrediction
return O3PreictedVal, (nnPrediction + PM25PredictedVal)/2
def pollutionAPi(lat, lon, offset):
return predictPollution(*weather.get_weather(lat, lon, offset))
#offset -> [0,2], 0 means now, 1 means one hour from now, and 2 means 2 hour from now
print pollutionAPi(51.0123, 0.3, 0)
示例9: NN
#################################################
# Title : Male or Female?
# Method : Back-Propagation Neural Networks
# Author : yang xiaolong
#################################################
from NN import *
from autonorm import*
import time
startTime = time.time()
# create a network with two input, one hidden, and one output nodes
n = NN(2, 1, 1)
opts = {'iterations': 50, 'learning rate': 0.25, 'momentum factor': 0.1}
def loadData():
te=[];te_x=[];te_y=[]
fileIn = open('data.txt')
for line in fileIn.readlines():
lineArr = line.strip().split()
te_x.append([float(lineArr[0]),float(lineArr[1])])
te_y.append([float(lineArr[2])])
te.append([[float(lineArr[0]),float(lineArr[1])],[float(lineArr[2])]])
return te_x,te_y,te
tex,tey,te= loadData()
tex1=AutoNorm(tex)
tey1=tey
te1=[]
for i in range(len(tex1)):
te1.append([tex1[i],tey1[i]])
示例10: train
def train(inputs, outputs, size, generations, threshold, cRate, mRate, printFile=False):
"""The train method creates a neural netwrok from the sets of
inputs and outputs. A population vector of size, is initialized
with ranodm weight vectors associated with the weights between
nodes in the neural network and will be the values being trained.
Generations is the max number of generations allowed while
threshold is the accuracy needed. cRate and mRate are the
crossover and mutation rates respectively."""
global hero
global OrigAnswers
OrigAnswers = copy.deepcopy(outputs)
# set up NN
EvaluationNN = GA.create_net(inputs, outputs)
# initialize population of size as random weights of NN
population = GA.generatePopulation(EvaluationNN, inputs, outputs, size)
if printFile:
f = open("DE.csv", "w")
gen = 0
trialV = []
offspringV = []
# evaluate the entire population
GA.evaluate(EvaluationNN, population, inputs, outputs)
# loop until a hero is found or we've reached max generations
while gen <= generations and hero == 0:
for i in range(size):
# mutate with DE/x/1/bin
trialV = mutate(population, i, mRate)
# perform binomial crossover
offspringV = crossover(population[i], trialV, cRate)
# evaluation of offspring
GA.evaluate(EvaluationNN, [offspringV], inputs, outputs)
# selection of better vector
if population[i][-1] > offspringV[-1]:
population[i] = offspringV
population = sorted(population, key=itemgetter(-1))
# check for hero in population
if GA.heroFound(population, threshold):
break
else:
print("Training: {:2.2%}".format(population[0][-1]), "{:2.2%} ".format(gen / generations), end="\r")
if printFile:
f.write("%f," % population[0][-1])
if printFile:
f.write("\n")
gen += 1
# return best hero if max generations is met and hero hasn't been selected.
# hero = sorted(population, key=itemgetter(-1))[0] # default to best in
# population if no hero steps forward
if printFile:
f.close()
if hero == 0:
gen -= 1
hero = sorted(population, key=itemgetter(-1))[0]
EvaluationNN.SetNNWeights(hero[:-1]) # Load hero into NN, prep for usage.
# Evaluate the hero on the inputs and outputs
print("Generations: %d" % gen, " " * 20)
print("Error Relative: {:2.5%}".format(NN.calcRelativeError(EvaluationNN, inputs, OrigAnswers)))
print("Least Squares: %d" % NN.calcLeastSquaresError(EvaluationNN, inputs, OrigAnswers))
print("Loss Squared: %d" % NN.calcLossSquared(EvaluationNN, inputs, OrigAnswers))
# for x in inputs:
# EvaluationNN.SetStartingNodesValues(x)
# EvaluationNN.CalculateNNOutputs()
# print(x, EvaluationNN.GetNNResults(), EvaluationNN.GetNNResultsInt(), OrigAnswers[inputs.index(x)])
print()
return EvaluationNN
示例11: NN2board
return tmp
'''
Convert neural network data to game situation.
'''
def NN2board(li):
tmp = ["X" if x==1 else ("O" if x==-1 else " ") for x in li]
tmp = np.array(tmp)
tmp.shape = (7,6)
tmp = tmp.T
return tmp
################################################################
try:
nn = NN.openNN()
print "NN successfully opened"
except:
print "not able to open NN"
print "create new one"
inp = []
out = []
fobj = open("database.txt")
counter=0
for line in fobj:
#print line.rstrip()
#displayStr(line.rstrip())
示例12: open
trainingdatafile = open('newdata.txt', 'r')
inputdata= readRecords(trainingdatafile)
datasize = len(inputdata)
# Randomly splits the file in 80-20 split for test and train data
trainingbatch , testbatch = train_test_split(inputdata, test_size=0.2)
# Values for the no of hidden, input and output neurons
numHiddenCells = 64
numInputCells = 9
numOutputCells = len(inputdata[0]) - numInputCells
nn = NN.neuralNet(numInputCells, numHiddenCells, numOutputCells)
errTrain = nn.train(trainingbatch)
errPred = 0
for test in testbatch:
output = nn.predict(test[:numInputCells])
#print output, np.argmax(test[numInputCells:]) + 1
if (output != np.argmax(test[numInputCells:]) + 1) :
errPred = errPred + 1
print errTrain, len(trainingbatch)
print errPred, len(testbatch)
示例13: range
#interneuron
NN.Matrix([5,1],[5,1],sigmaR=sigmaR),
NN.Addition([5,1],sigmaR=sigmaR),
NN.ComponentwiseFunction(),
# interneuron 2
NN.Matrix([5,1],[5,1],sigmaR=sigmaR),
NN.Addition([5,1],sigmaR=sigmaR),
NN.ComponentwiseFunction(),
# output
#Matrix([5,1],[2,1],sigmaR=sigmaR),
#Addition([2,1],sigmaR=sigmaR)
NN.Matrix([5,1],[3,1],sigmaR=sigmaR),
NN.Addition([3,1],sigmaR=sigmaR)
])
# a nice simple interface
nn = NN.makeStandardNeuralNet(inputDim=2,outputDim=3,interDim=20,nInter=5,sigmaR=sigmaR)
# simple training set in 2D
n = 100
x = np.zeros([2,1,n])
z = np.zeros([2,1,n])
for i in range(n):
off = np.random.rand() > 0.5
x[:,:,i] = np.random.randn(2,1) + off*3
z[0,:,i] = float(off)
z[1,:,i] = 1.0 - float(off)
n = 200
x = np.zeros([2,1,n])
z = np.zeros([3,1,n])
for i in range(n):
category = np.random.randint(3)
示例14: train_test
def train_test():
global cRate, mRate, threshold, generations, size, participants, victors, inFile, algo, dataset, resultsFile
inputs = []
outputs = []
evolve()
resultsFile.write("DATASET: " + dataset + "\n")
#resultsFile.write("ALGORITHM | Generations | Size | Participants | Victors | mRate | cRate | Threshold \n")
#resultsFile.write(" " + str(algo) + " | " + str(generations) + " | " +
# str(size) + " | " + str(participants) + " | " + str(victors) +
# " | " + str(mRate) + " | " + str(cRate) + " | " + str(threshold) + " \n")
dataIn = dataHandler()
inputs = dataIn[0]
outputs = dataIn[1]
testInput = []
testOutput = []
learnrate = 0.3
momentum = 0.5
# Need 20% of inputs for testing
for i in range((int(len(inputs)*0.8)+1), len(inputs)):
x = random.choice(inputs)
testInput.append(x)
testOutput.append(outputs[inputs.index(x)])
del outputs[inputs.index(x)]
del inputs[inputs.index(x)]
resultsFile.write("\nTest inputs: \n")
for i in range(len(testInput)):
resultsFile.write("%s " % testInput[i])
resultsFile.write("\nTest expected outputs: \n")
for i in range(len(testOutput)):
resultsFile.write("%s " % testOutput[i])
# Which algorithm gets chosen to run
if algo in 'G':
print("DOING GA TRAINING...")
resultsFile.write("\nALGORITHM | Generations | Size | Participants | Victors | mRate | cRate | Threshold \n")
resultsFile.write(" " + str(algo) + " | " + str(generations) + " | " + str(size) + " | " + str(participants) + " | " + str(victors) + " | " + str(mRate) + " | " + str(cRate) + " | " + str(threshold) + " \n")
testNN = GA.train(inputs, outputs, size, participants, victors, generations, threshold, cRate, mRate)
elif algo in 'E':
print("DOING ES TRAINING...")
resultsFile.write("\nALGORITHM | Generations | Size | Participants | Victors | mRate | cRate | Threshold \n")
resultsFile.write(" " + str(algo) + " | " + str(generations) + " | " + str(size) + " | " + str(participants) + " | " + str(victors) + " | " + str(mRate) + " | " + str(cRate) + " | " + str(threshold) + " \n")
testNN = ES.train(inputs, outputs, size, participants, victors, generations, threshold, cRate, mRate)
elif algo in 'D':
print("DOING DE TRAINING...")
resultsFile.write("\nALGORITHM | Generations | Size | mRate | cRate | Threshold \n")
resultsFile.write(" " + str(algo) + " | " + str(generations) + " | " + str(size) + " | " + str(mRate) + " | " + str(cRate) + " | " + str(threshold) + " \n")
testNN = DE.train(inputs, outputs, size, generations, threshold, cRate, mRate)
elif algo in 'B':
print("DOING BP TRAINING...")
resultsFile.write("\nALGORITHM | Generations | learnrate | momentum | Threshold \n")
resultsFile.write(" " + str(algo) + " | " + str(generations) + " | " + str(learnrate) + " | " + str(momentum) + " | " + str(threshold) + " \n")
testNN = NN.main(inputs, [['S','S','S'], ['S','S']], ['S'], outputs, generations, learnrate, threshold, momentum)
else:
print("Unrecognized algorithm!")
sys.exit()
# Print test input/expected output - could be made prettier in a table
# Start testing testNN
for x in testInput:
resultsFile.write("\nSet starting node vals\n")
resultsFile.write("%s \n" % testNN.SetStartingNodesValues(x))
testNN.CalculateNNOutputs()
resultsFile.write("\nTest Input: " + str(x) + "\n")
resultsFile.write("\nTest results: %s\n" % testNN.GetNNResults())
resultsFile.write("\nRelative Error: {:2.2%} \n".format(NN.calcRelativeError(testNN, testInput, testOutput)))
resultsFile.write("\nLeast Squares Error: %s \n" % NN.calcLeastSquaresError(testNN, testInput, testOutput))
resultsFile.write("\nLoss Squared Error: %s \n" % NN.calcLossSquared(testNN, testInput, testOutput))
resultsFile.write("\nPercent Misidentified: {:2.2%} \n".format(NN.calcPercentIncorrect(testNN, testInput, testOutput)))
resultsFile.close()
示例15: print
print('Attempting to open {}.'.format(filename))
im = readImage(filename)
if (max(im.size) > 600):
im = im.resize((int(600*(float(im.size[0])/max(im.size))), int(600*(float(im.size[1])/max(im.size)))))
print('Opened.')
print('Attempting to stipple...')
cellSize = 2
# Create a stippled version of the image; limit 6000 px.
lst = stipple(im, cellSize, 0)
while (len(lst) > 6000):
cellSize += 1
lst = stipple(im, cellSize, 0)
lst = stipple(im, cellSize, 8)
print('There are {} points.'.format(len(lst)))
print('Stippled!')
print('Attempting TSP with naive NN...')
lst = NN.tsp(lst)
print('Now converting to list of segments...')
segSet = createSegSet(lst)
## Let's make sure all of our segments share a point...
print('Correcting any overlaps...')
drawSegSet(segSet, im.size, 'start.jpg')
segSet = correct(segSet, im)
drawSegSet(segSet, im.size, 'end.jpg')
print('Done.')