当前位置: 首页>>代码示例>>Python>>正文


Python Features.features方法代码示例

本文整理汇总了Python中Features.features方法的典型用法代码示例。如果您正苦于以下问题:Python Features.features方法的具体用法?Python Features.features怎么用?Python Features.features使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Features的用法示例。


在下文中一共展示了Features.features方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: import Features [as 别名]
# 或者: from Features import features [as 别名]
def train(model, training, keys, pca_num=None):
    if model == "1nn":
        model = OneNN()
    elif model == "rf":
        model = makeRF()
    training = SymbolData.normalize(training, 99)
    f = Features.features(training)
    pca = None
    if (pca_num != None):
        pca = sklearn.decomposition.PCA(n_components=pca_num)
        pca.fit(f)
        f = pca.transform(f)
    model.fit(Features.features(training), SymbolData.classNumbers(training, keys))
    return (model, pca)
开发者ID:Shusil,项目名称:patern-recognition-project,代码行数:16,代码来源:Classification.py

示例2: classifyExpression

# 需要导入模块: import Features [as 别名]
# 或者: from Features import features [as 别名]
def classifyExpression(expression, keys, model, pca, renormalize=True):
    symbs = expression.symbols
    if renormalize:
        symbs = SymbolData.normalize(symbs, 99)
    f = Features.features(symbs)
    if (len (symbs) == 0):
        print(expression.name, " has no valid symbols!")
        return ([], [])
    if (pca != None):
        f = pca.transform(f)
    pred = model.predict(f)
    assert (max(pred) < len(keys))
    f = (lambda p: keys[p])
    expression.classes = map (f, pred)
    return (NP.array(SymbolData.classNumbers(symbs, keys)), pred)
开发者ID:Shusil,项目名称:patern-recognition-project,代码行数:17,代码来源:Classification.py

示例3: main

# 需要导入模块: import Features [as 别名]
# 或者: from Features import features [as 别名]
def main(argv=None):
    if argv is None:
        argv = sys.argv[1:] #dirty trick to make this convenient in the interpreter.
    if (len (argv) < 3 or len (argv) > 4): 
        print(("bad number of args:" , len(argv)))
        print (usage)
    else:
        if (len ( argv ) == 3):
            exprs, keys = SymbolData.unpickleSymbols(argv[2])
        else:
            exprs = SymbolData.readInkmlDirectory(argv[2], argv[3])
            keys = SymbolData.defaultClasses
            
        if (argv[0] == "-nn" ):
            model = Classification.OneNN()
        elif (argv[0] == "-rf" ):
            model = Classification.makeRF()
        elif (argv[0] == "-et" ):
            model = Classification.makeET()
        else:
            with open(argv[0], 'rb') as f:
                model =  pickle.load(f)
                #this had better actually be a sklearn model or the equivelent.
                #things will break in ways that are hard for me to test for if it isn't.

        symbs = SymbolData.allSymbols(exprs)
        
        trained, pca = Classification.train(model, symbs, keys)

        print ("Done training.")
        if False:
            f = Features.features(symbs)
            if (pca != None):
                f = pca.transform(f)
            pred = model.predict(f)
            print( "Accuracy on training set : ", accuracy_score(SymbolData.classNumbers(symbs, keys), pred))


        #joblib.dump((trained, pca), argv[2])    
        with open(argv[1], 'wb') as f:
            pickle.dump((trained, pca, keys), f, pickle.HIGHEST_PROTOCOL)
开发者ID:Shusil,项目名称:patern-recognition-project,代码行数:43,代码来源:train.py

示例4: print

# 需要导入模块: import Features [as 别名]
# 或者: from Features import features [as 别名]
#    I = Features.features(symbol)
#    i+=1

#7989,12287,12288,23126,23127 test.dat
# 2467,3121,22071,22072,22731,46263 train.dat

# Without vertical repositioning
#6432,6433
i=0
for symbol in symbols[0:]:
    print(i)
    I = Features.symbolFeatures(symbol)
    i+=1

### Save FKI Testing features
#f = Features.features(symbols)
#Features.pickleFeatures(f,"FKIFeat_Test.dat")

### Save FKI Training features
#f = Features.features(symbols)
#Features.pickleFeatures(f,"FKIFeat_Train.dat")
#feat = Features.unpickleFeatures("FKIFeat_Train.dat")

### Save RWTH features
f = Features.features(symbols)
Features.pickleFeatures(f,"RWTHFeat_Train.dat")

### Save Statisticla features
#f = Features.features(symbols)
#Features.pickleFeatures(f,"StatFeat_Test.dat")
开发者ID:Shusil,项目名称:patern-recognition-project,代码行数:32,代码来源:runme.py


注:本文中的Features.features方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。