本文整理汇总了Python中FUNC.distance2方法的典型用法代码示例。如果您正苦于以下问题:Python FUNC.distance2方法的具体用法?Python FUNC.distance2怎么用?Python FUNC.distance2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FUNC
的用法示例。
在下文中一共展示了FUNC.distance2方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: conect
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def conect(self):
# Return pairs of numbers that should be CONECTed
# First extract the backbone IDs
cg = self.cg()
bb = [i+1 for i, j in zip(range(len(cg)), cg) if j[0] == "BB"]
bb = zip(bb, bb[1:]+[len(bb)])
# Set the backbone CONECTs (check whether the distance is consistent with binding)
conect = [(i, j) for i, j in bb[:-1] if FUNC.distance2(cg[i-1][4:7], cg[j-1][4:7]) < 14]
# Now add CONECTs for sidechains
for i, j in bb:
nsc = j-i-1
示例2: bbGetBond
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def bbGetBond(self,r,ca,ss):
# Retrieve parameters for each residue from tables defined above
# Check is it DNA residue
if r[0] in MAP.dnares3:
return ca in self.dnaBbBondDictC.keys() and self.dnaBbBondDictC[ca] or None
# RNA is not implemented properly yet
elif r[0] in MAP.rnares3:
return ca in self.rnaBbBondDictC.keys() and self.rnaBbBondDictC[ca] or None
# If it's protein
else:
import FUNC
import math
# The 150000 forceconstant gave an error message, turning to constraints would be better.
return ( math.sqrt(FUNC.distance2(ca[0],ca[1]))/10., None )
示例3: rubberBands
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def rubberBands(atomList, lowerBound, upperBound, decayFactor, decayPower, forceConstant, minimumForce):
out = []
u2 = upperBound**2
while len(atomList) > 3:
bi, xi = atomList.pop(0)
for bj, xj in atomList[2:]:
# Mind the nm/A conversion -- This has to be standardized! Global use of nm?
d2 = FUNC.distance2(xi, xj)/100
if d2 < u2:
dij = math.sqrt(d2)
fscl = decayFunction(dij, lowerBound, decayFactor, decayPower)
if fscl*forceConstant > minimumForce:
out.append({"atoms": (bi, bj), "parameters": (dij, "RUBBER_FC*%f" % fscl)})
return out
示例4: rubberBands
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def rubberBands(atomList,lowerBound,upperBound,decayFactor,decayPower,forceConstant,minimumForce):
out = []
u2 = upperBound**2
while len(atomList) > 3:
bi,xi = atomList.pop(0)
# This is a bit weird (=wrong I think) way of doing the cutoff...
#for bj,xj in atomList[2:]:
for bj,xj in atomList:
# Mind the nm/A conversion -- This has to be standardized! Global use of nm?
d2 = FUNC.distance2(xi,xj)/100
#if bi==73 and bj==79:
# print xi, xj, d2
if d2 < u2:
dij = math.sqrt(d2)
fscl = decayFunction(dij,lowerBound,decayFactor,decayPower)
if fscl*forceConstant > minimumForce:
out.append({"atoms":(bi,bj),"parameters": (dij,"RUBBER_FC*%f"%fscl)})
return out
示例5: bbGetBond
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def bbGetBond(self,r,ca,ss):
import FUNC
import math
# The 150000 forceconstant gave an error message, turning to constraints would be better.
return ( math.sqrt(FUNC.distance2(ca[0],ca[1]))/10., 150000 )
示例6: check_merge
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def check_merge(chains, m_list=[], l_list=[], ss_cutoff=0):
chainIndex = range(len(chains))
if 'all' in m_list:
logging.info("All chains will be merged in a single moleculetype.")
return chainIndex, [chainIndex]
chainID = [chain.id for chain in chains]
# Mark the combinations of chains that need to be merged
merges = []
if m_list:
# Build a dictionary of chain IDs versus index
# To give higher priority to top chains the lists are reversed
# before building the dictionary
chainIndex.reverse()
chainID.reverse()
dct = dict(zip(chainID, chainIndex))
chainIndex.reverse()
# Convert chains in the merge_list to numeric, if necessary
# NOTE The internal numbering is zero-based, while the
# command line chain indexing is one-based. We have to add
# one to the number in the dictionary to bring it on par with
# the numbering from the command line, but then from the
# result we need to subtract one again to make indexing
# zero-based
merges = [[(i.isdigit() and int(i) or dct[i]+1)-1 for i in j] for j in m_list]
for i in merges:
i.sort()
# Rearrange merge list to a list of pairs
pairs = [(i[j], i[k]) for i in merges for j in range(len(i)-1) for k in range(j+1, len(i))]
# Check each combination of chains for connections based on
# ss-bridges, links and distance restraints
for i in chainIndex[:-1]:
for j in chainIndex[i+1:]:
if (i, j) in pairs:
continue
# Check whether any link links these two groups
for a, b in l_list:
if ((a in chains[i] and b in chains[j]) or (a in chains[j] and b in chains[i])):
logging.info("Merging chains %d and %d to allow link %s" % (i+1, j+1, str((a, b))))
pairs.append(i < j and (i, j) or (j, i))
break
if (i, j) in pairs:
continue
# Check whether any cystine bond given links these two groups
#for a,b in s_list:
# if ((a in chains[i] and b in chains[j]) or
# (a in chains[j] and b in chains[i])):
# logging.info("Merging chains %d and %d to allow cystine bridge"%(i+1,j+1))
# pairs.append( i<j and (i,j) or (j,i) )
# break
#if (i,j) in pairs:
# continue
# Check for cystine bridges based on distance
if not ss_cutoff:
continue
# Get SG atoms from cysteines from either chain
# Check this pair of chains
for cysA in chains[i]["CYS"]:
for cysB in chains[j]["CYS"]:
d2 = FUNC.distance2(cysA["SG"][4:7], cysB["SG"][4:7])
if d2 <= ss_cutoff:
logging.info("Found SS contact linking chains %d and %d (%f nm)" % (i+1, j+1, math.sqrt(d2)/10))
pairs.append((i, j))
break
if (i, j) in pairs:
break
# Sort the combinations
pairs.sort(reverse=True)
merges = []
while pairs:
merges.append(set([pairs[-1][0]]))
for i in range(len(pairs)-1, -1, -1):
if pairs[i][0] in merges[-1]:
merges[-1].add(pairs.pop(i)[1])
elif pairs[i][1] in merges[-1]:
merges[-1].add(pairs.pop(i)[0])
merges = [list(i) for i in merges]
for i in merges:
i.sort()
order = [j for i in merges for j in i]
if merges:
logging.warning("Merging chains.")
logging.warning("This may change the order of atoms and will change the number of topology files.")
logging.info("Merges: " + ", ".join([str([j+1 for j in i]) for i in merges]))
if len(merges) == 1 and len(merges[0]) > 1 and set(merges[0]) == set(chainIndex):
logging.info("All chains will be merged in a single moleculetype")
# Determine the order for writing; merged chains go first
merges.extend([[j] for j in chainIndex if j not in order])
order.extend([j for j in chainIndex if j not in order])
#.........这里部分代码省略.........
示例7: contacts
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def contacts(atoms, cutoff=5):
rla = range(len(atoms))
crd = [atom[4:] for atom in atoms]
return [(i, j) for i in rla[:-1] for j in rla[i+1:]
if FUNC.distance2(crd[i], crd[j]) < cutoff]
示例8: residueDistance2
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
def residueDistance2(r1, r2):
return min([FUNC.distance2(i, j) for i in r1 for j in r2])
示例9: main
# 需要导入模块: import FUNC [as 别名]
# 或者: from FUNC import distance2 [as 别名]
#.........这里部分代码省略.........
chain.set_ss(ssAver[:len(chain)])
ssAver = ssAver[len(chain):]
# Now the chains are complete, each consisting of a residuelist,
# and a secondary structure designation if the chain is of type 'Protein'.
# There may be mixed chains, there may be HETATM things.
# Water has been discarded. Maybe this has to be changed at some point.
# The order in the coarse grained files matches the order in the set of chains.
#
# If there are no merges to be done, i.e. no global Elnedyn network, no
# disulphide bridges, no links, no distance restraints and no explicit merges,
# then we can write out the topology, which will match the coarse grained file.
#
# If there are merges to be done, the order of things may be changed, in which
# case the coarse grained structure will not match with the topology...
# CYSTINE BRIDGES #
# Extract the cysteine coordinates (for all frames) and the cysteine identifiers
if options['CystineCheckBonds']:
logging.info("Checking for cystine bridges, based on sulphur (SG) atoms lying closer than %.4f nm" % math.sqrt(options['CystineMaxDist2']/100))
cyscoord = zip(*[[j[4:7] for j in i] for i in cysteines])
cysteines = [i[:4] for i in cysteines[0]]
bl, kb = options['ForceField'].special[(("SC1", "CYS"), ("SC1", "CYS"))]
# Check the distances and add the cysteines to the link list if the
# SG atoms have a distance smaller than the cutoff.
rlc = range(len(cysteines))
for i in rlc[:-1]:
for j in rlc[i+1:]:
# Checking the minimum distance over all frames
# But we could also take the maximum, or the mean
d2 = min([FUNC.distance2(a, b) for a, b in zip(cyscoord[i], cyscoord[j])])
if d2 <= options['CystineMaxDist2']:
a, b = cysteines[i], cysteines[j]
options['linkListCG'].append((("SC1", "CYS", a[2], a[3]), ("SC1", "CYS", b[2], b[3]), bl, kb))
a, b = (a[0], a[1], a[2]-(32 << 20), a[3]), (b[0], b[1], b[2]-(32 << 20), b[3])
logging.info("Detected SS bridge between %s and %s (%f nm)" % (a, b, math.sqrt(d2)/10))
# REAL ITP STUFF #
# Check whether we have identical chains, in which case we
# only write the ITP for one...
# This means making a distinction between chains and
# moleculetypes.
molecules = [tuple([chains[i] for i in j]) for j in merge]
# At this point we should have a list or dictionary of chains
# Each chain should be given a unique name, based on the value
# of options["-o"] combined with the chain identifier and possibly
# a number if there are chains with identical identifiers.
# For each chain we then write an ITP file using the name for
# moleculetype and name + ".itp" for the topology include file.
# In addition we write a master topology file, using the value of
# options["-o"], with an added extension ".top" if not given.
# XXX *NOTE*: This should probably be gathered in a 'Universe' class
itp = 0
moleculeTypes = {}
for mi in range(len(molecules)):
mol = molecules[mi]
# Check if the moleculetype is already listed
# If not, generate the topology from the chain definition
if mol not in moleculeTypes or options['SeparateTop']:
# Name of the moleculetype