本文整理汇总了Python中Constants.nodeInfoGen方法的典型用法代码示例。如果您正苦于以下问题:Python Constants.nodeInfoGen方法的具体用法?Python Constants.nodeInfoGen怎么用?Python Constants.nodeInfoGen使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Constants
的用法示例。
在下文中一共展示了Constants.nodeInfoGen方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getPRMLadder
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getPRMLadder(seq, ambigAA='X', addEnds=True, ambigEdges=None):
prmLadder = []
nodeGen = Constants.nodeInfoGen(seq, considerTerminalMods=True, addTerminalNodes=addEnds, ambigEdges=ambigEdges, ambigAA=ambigAA)
for node in nodeGen:
prmLadder.extend([node['prm']])
return prmLadder
示例2: getPRMLadder
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getPRMLadder(seq, startMass, ambigAA='X', ambigEdges=None, epsilon=1, addEnds=True, considerTerminalMods=True):
nodeGen = Constants.nodeInfoGen(seq, startMass=startMass, addTerminalNodes=addEnds, considerTerminalMods=considerTerminalMods)
seqIndex = 1
PRMLadder = []
while True:
try:
node = nodeGen.next()
PRMLadder.extend([node['prm']])
except KeyError:
if seq[seqIndex - 1] == ambigAA:
edge = ambigEdges[0]
ambigEdges = ambigEdges[1:]
if np.abs(edge[0] - (PRMLadder[-1] if len(PRMLadder) > 0 else startMass)) < epsilon:
PRMLadder.extend([edge[1]])
PRMLadder.extend(getPRMLadder(seq=seq[seqIndex:], startMass=edge[1], ambigAA=ambigAA, ambigEdges=ambigEdges, epsilon=epsilon, addEnds=False))
break
else:
print 'ERROR: Ambiguous edges do not correspond to ambiguous regions of sequence for PRM =', PRMLadder[-1] if len(PRMLadder) > 0 else startMass, 'and ambiguous edges', edge
return False
else:
raise ValueError('Unknown amino acid found %s' % node['lattAA'])
except StopIteration:
break
return PRMLadder
示例3: getAllAAs
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getAllAAs(seq, ambigAA='X', ambigEdges=None):
AAs = []
nodeGen = Constants.nodeInfoGen(seq, considerTerminalMods=True, ambigEdges=ambigEdges)
for node in nodeGen:
AAs.extend([node['formAA']])
AAs.extend([node['lattAA']])
return AAs
示例4: getFilteredPRMLadder
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getFilteredPRMLadder(seq, specs, filterRule, ambigAA='X', addEnds=True, ambigEdges=None):
prmLadder = []
nodeGen = Constants.nodeInfoGen(seq, considerTerminalMods=True, addTerminalNodes=addEnds, ambigEdges=ambigEdges, ambigAA=ambigAA)
for node in nodeGen:
addToLadder = False
for spec in specs:
if node['prm'] == 0 or node['prm'] == spec.pm or filterRule(node, spec):
addToLadder = True
if addToLadder:
prmLadder += [node['prm']]
return prmLadder
示例5: getScoreStats
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getScoreStats(specs, peptide, ambigEdges=None, ppmstd=5):
prmStats = {'All Evidence': 0, 'Majority Evidence': 0, 'None Evidence': 0}
nodeGen = Constants.nodeInfoGen(peptide, considerTerminalMods=True, ambigEdges=ambigEdges)
prevNodeMass = 0
totalMinNodeScore = 100000
specScoreStats = {}
for i in range(len(specs)):
specScoreStats[i] = {'Score': 0, 'Negative': 0, 'Min Node Score': 100000}
for node in nodeGen:
numPos = 0
totalNodeScore = 0
for i, spec in enumerate(specs):
if prevNodeMass == 0:
specScoreStats[i]['Score'] += spec.getPriorScore(prm=0, formAA=None, lattAA=node['formAA'])
score = spec.getNodeScore(prm=node['prm'], formAA=node['formAA'], lattAA=node['lattAA'])
specScoreStats[i]['Score'] += score
totalNodeScore += score
if score > 0:
numPos += 1
if score < 0:
specScoreStats[i]['Negative'] += 1
if score < specScoreStats[i]['Min Node Score']:
specScoreStats[i]['Min Node Score'] = score
if numPos == len(specs):
prmStats['All Evidence'] += 1
if 2*numPos >= len(specs):
prmStats['Majority Evidence'] += 1
if numPos == 0:
prmStats['None Evidence'] += 1
if totalNodeScore < totalMinNodeScore:
totalMinNodeScore = totalNodeScore
prevNodeMass = node['prm']
for i, spec in enumerate(specs):
specScoreStats[i]['Score'] += spec.getPriorScore(prm=spec.pm, formAA=node['lattAA'], lattAA=None)
scores = [specScoreStats[i]['Score'] for i in specScoreStats]
totalPathScore = sum(scores)
maxPathScore = max(scores)
minPathScore = min(scores)
return {'Total Path Score': totalPathScore, 'Total Minimum Node Score': totalMinNodeScore, 'Minimum Path Score': minPathScore, 'Maximum Path Score': maxPathScore, 'Aggregate PRM Score Statistics': prmStats, 'Spectrum Specific Score Statistics': specScoreStats}
示例6: addToCounts
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def addToCounts(self, spec):
try:
nodes = Constants.nodeInfoGen(spec.seq, considerTerminalMods=True, addTerminalNodes=True)
for nodeInfo in nodes:
Inds = self.getInds(spec, nodeInfo, getIons=True if ProbNetwork.getTerminus(nodeInfo) == 2 else False)
for dist in self._dists:
try:
for attr in self._counts[dist].keys():
conds = self._config[dist][attr]
attrLoc = (Inds[attr],) + tuple(Inds[cond] for cond in conds)
self._counts[dist][attr][attrLoc] += 1
except KeyError:
pass
except AttributeError:
print 'No counts matrix detected. Not in training mode!'
示例7: getTagScore
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getTagScore(spec, subSeq, startMass, deNovoTerm, ambigEdges=None, addTerminalNodes=True, verbose=False):
nodeGen = Constants.nodeInfoGen(subSeq, startMass=startMass, ambigEdges=ambigEdges, addTerminalNodes=addTerminalNodes)
nodes = list(nodeGen)
if addTerminalNodes:
if deNovoTerm == 'N':
nodes = nodes[1:]
if deNovoTerm == 'C':
nodes = nodes[:-1]
if verbose:
print nodes
score = 0
for node in nodes:
score += spec.getNodeScore(**node)
return score
示例8: displayConfColoredSequence
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def displayConfColoredSequence(self, G, masterFrame, path, seq, ambigEdges=None):
nodeGen = Constants.nodeInfoGen(seq, addTerminalNodes=False, considerTerminalMods=True, ambigEdges=ambigEdges)
prevNode = None
for i, node in enumerate(nodeGen):
print node, path[i+1]
node['prm'] = path[i+1]
confScore = An.getAAConfidence(G, prevNode=prevNode, nextNode=node)
prevNode = node
hexColor = self.getHexString(np.array([1-confScore, confScore, 0]))
if prevNode == None and seq[len(node['formAA'])] in Constants.NTermMods:
Label(masterFrame, text=node['formAA']+seq[len(node['formAA'])], fg='white', bg=hexColor).pack(side=LEFT)
else:
Label(masterFrame, text=node['formAA'], fg='white', bg=hexColor).pack(side=LEFT)
confScore = An.getAAConfidence(G, prevNode=prevNode, nextNode=None)
hexColor = self.getHexString(np.array([1-confScore, confScore, 0]))
if seq[-1] in Constants.CTermMods:
Label(masterFrame, text=node['lattAA']+seq[-1], fg='white', bg=hexColor).pack(side=LEFT)
else:
Label(masterFrame, text=node['lattAA'], fg='white', bg=hexColor).pack(side=LEFT)
示例9: getLADSPScore
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import nodeInfoGen [as 别名]
def getLADSPScore(seq, dtaPath, PNet, ppm=5, ambigEdges=None, ambigAA='X', ambigPenalty=20):
pairs = DataFile.getMassIntPairs(dtaPath)
precMass = DataFile.getPrecMassAndCharge(dtaPath)[0]
epsilon = ppm * precMass * 10 ** -6
spec = PN.Spectrum(PNet, precMass, Nmod=0, Cmod=0, epsilon=epsilon, spectrum=pairs)
spec.initializeNoiseModel()
nodeGen = Constants.nodeInfoGen(seq, considerTerminalMods=True, ambigEdges=ambigEdges)
pScore = 0
node = nodeGen.next()
pScore += spec.getNodeScore(**node)
pScore += spec.getPriorScore(prm=0, formAA=None, lattAA=node['formAA'])
if node['formAA'] == ambigAA:
pScore -= ambigPenalty
for node in nodeGen:
pScore += spec.getNodeScore(**node)
if node['formAA'] == ambigAA:
pScore -= ambigPenalty
pScore += spec.getPriorScore(prm=precMass- Constants.mods['H+'] - Constants.mods['H2O'], formAA=node['lattAA'], lattAA=None)
if node['lattAA'] == ambigAA:
pScore -= ambigPenalty
return pScore