本文整理汇总了Python中Constants.invTimeFactor方法的典型用法代码示例。如果您正苦于以下问题:Python Constants.invTimeFactor方法的具体用法?Python Constants.invTimeFactor怎么用?Python Constants.invTimeFactor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Constants
的用法示例。
在下文中一共展示了Constants.invTimeFactor方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: impulse
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def impulse(phys, forces, io, steps, cyclelength, fg, nextinteg, *args):
"""
Verlet/r-RESPA propagation method.
Implements the multiple-timestepping Verlet/r-RESPA method, also
known as Impulse. This propagator invokes an 'inner' propagator
for a specific number of cycles per iteration, then computes its
own forces.
cf. H. Grubmuller, H. Heller, A. Windemuth and K. Schulten.
Generalized Verlet Algorithm for Efficient Molecular Dyanmics
Simulatiosn with Long-Range Interactions. Molecular Simulation,
vol. 6, pages 121-142, 1991.
@type phys: Physical
@param phys: The physical system.
@type forces: Forces
@param forces: MDL Forces object.
@type io: IO
@param io: MDL IO object.
@type steps: int
@param steps: Number of steps to run.
@type cyclelength: float
@param cyclelength: Number of iterations of inner method.
@type fg: ForceField
@param fg: MDL force field for evaluation.
@type nextinteg: function handle
@param nextinteg: Method handle for next propagator in the chain
@type args: tuple
@param args: Parameters for the next propagator in the chain
"""
# Calculate initial forces
step = 0
# For all steps
timestep = cyclelength*args[0]
args2 = (args[0]*Constants.invTimeFactor(),)+args[1:len(args)]
while (step < steps):
# Update velocities by half a step
phys.velocities += forces.force*0.5*timestep*phys.invmasses # half kick
# Run the next integrator in the chain, and store its results
# in an array
nextinteg(phys, forces, io, cyclelength/Constants.invTimeFactor(), *args2)
# Calculate new forces
fg.calculateForces(phys, forces)
# Update velocities by another half step
phys.velocities += forces.force*0.5*timestep*phys.invmasses # half kick
step = step + 1
示例2: timestep
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def timestep(self, integ):
"""
Return the timestep of a propagator, scaled accordingly
@type integ: object
@param integ: MDL propagator object (STS or MTS)
@rtype: float
@return: The timestep (dt) of a propagator
"""
return integ.getTimestep() * Constants.invTimeFactor()
示例3: executePropagator
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def executePropagator(prop, phys, forces, io, numsteps):
"""
Run and finish the propagator.
@type prop: Propagator
@param prop: MDL Propagator object
@type phys: Physical
@param phys: The physical system.
@type forces: Forces
@param forces: MDL Forces object
@type io: IO
@param io: MDL IO object
@type numsteps: int
@param numsteps: Number of steps to run
"""
# RUN
if (prop.myStep == 0 and prop.myLevel == 0):
io.run(phys, forces, prop.myStep, prop.myTimestep, prop.myPropagator)
if (prop.isMDL(prop.myPropagator)):
prop.runModifiers(prop.myPropagator.prerunmodifiers, phys, forces, prop, prop.myPropagator)
ii = 0
#prop.myPropagator.run(numsteps)
#return
while (ii < numsteps):
nextstop = int(numpy.minimum(numsteps, io.computeNext(ii, phys.remcom, phys.remang)))
if (prop.isMDL(prop.myPropagator)):
while (ii < nextstop):
prop.myPropagator.run(phys, forces, prop)
ii += 1
phys.myTop.time = prop.myStep*prop.myPropagator.getTimestep()*Constants.invTimeFactor()
phys.updateCOM_Momenta()
else:
prop.myPropagator.run(nextstop-ii)
ii = nextstop
if (prop.myLevel == 0):
prop.myStep = nextstop
phys.myTop.time = prop.myStep*prop.myPropagator.getTimestep()
io.run(phys, forces, prop.myStep, prop.myTimestep, prop.myPropagator)
if (phys.remcom > 0 and ii % phys.remcom == 0):
TopologyUtilities.remLin(phys.velvec, phys.myTop)
if (phys.remang > 0 and ii % phys.remang >= 0):
TopologyUtilities.remAng(phys.posvec, phys.velvec, phys.myTop)
if (prop.isMDL(prop.myPropagator)):
prop.runModifiers(prop.myPropagator.postrunmodifiers, phys, forces, prop, prop.myPropagator)
prop.myPropagator.finish(phys, forces, prop)
示例4: executePropagator
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def executePropagator(prop, phys, forces, io, numsteps):
"""
Run and finish the propagator.
@type prop: Propagator
@param prop: MDL Propagator object
@type phys: Physical
@param phys: The physical system.
@type forces: Forces
@param forces: MDL Forces object
@type numsteps: int
@param numsteps: Number of steps to run
"""
# RUN
if (prop.myStep == 0 and prop.myLevel == 0):
io.run(phys, forces, prop.myStep, prop.myTimestep, prop.myPropagator)
if (prop.isMDL(prop.myPropagator)):
prop.runModifiers(prop.myPropagator.prerunmodifiers, phys, forces, prop, prop.myPropagator)
ii = 0
while (ii < numsteps):
if (io.pmvMODE == 0): # STOP CODE
return
elif (io.pmvMODE != 2): # RUN CODE
if (prop.isMDL(prop.myPropagator)):
prop.myPropagator.run(phys, forces, prop)
phys.myTop.time = prop.myStep*prop.myPropagator.getTimestep()*Constants.invTimeFactor()
phys.updateCOM_Momenta()
else:
prop.myPropagator.run(1)
if (io.doPmv):
io.pmvPlot()
ii = ii + 1
if (prop.myLevel == 0):
prop.myStep += 1
phys.myTop.time = prop.myStep*prop.myPropagator.getTimestep()
io.run(phys, forces, prop.myStep, prop.myTimestep, prop.myPropagator)
if (phys.remcom >= 0):
TopologyUtilities.removeLinearMomentum(phys.velvec, phys.myTop).disown()
if (phys.remang >= 0):
TopologyUtilities.removeAngularMomentum(phys.posvec, phys.velvec, phys.myTop).disown()
else: # PAUSE CODE
io.pmvPlot()
if (prop.isMDL(prop.myPropagator)):
prop.runModifiers(prop.myPropagator.postrunmodifiers, phys, forces, prop, prop.myPropagator)
prop.myPropagator.finish(phys, forces, prop)
示例5: init
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def init(self, phys, forces, prop):
"""
Set and initialize the propagator.
@type phys: Physical
@param phys: The physical system.
@type forces: Forces
@param forces: MDL Forces object
@type prop: Propagator
@param prop: MDL Propagator object
"""
self.gamma = self.gamma*0.001/Constants.invTimeFactor() #: Dissipative factor
prop.calculateForces(forces)
示例6: propagate
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
#.........这里部分代码省略.........
if str(type(scheme))[7:11] != "list":
chain += (params,)
else:
if params.has_key(outerscheme):
chain += (params[outerscheme],)
else:
chain += ({},)
for i in range(1, levels):
if str(type(scheme))[7:11] == "list" and i < len(scheme):
chain += (scheme[i],)
if str(type(cyclelength))[7:11] == "list" and i < len(cyclelength):
chain += (cyclelength[i],)
else:
chain += (dt,)
chain += (self.deepCopyForce(forcefield[i]),)
if params.has_key(scheme[i]):
chain += (params[scheme[i]],)
else:
chain += ({},)
else: # STS
outertime = dt
outerscheme = scheme
outerforcefield = self.deepCopyForce(forcefield)
chain += (params,)
# Build force fields.
# Tricky, because we could be dealing with
# a single object or list.
if (str(type(forcefield)))[7 : len(str(type(forcefield))) - 2] == "list":
for ff in forcefield:
if ff.dirty:
ff.build()
if ff.gbsa:
self.phys.myTop.implicitSolvent = 2
self.phys.myTop.doGBSAOpenMM = 1
self.phys.build()
else:
if forcefield.dirty:
forcefield.build()
if forcefield.gbsa:
self.phys.myTop.implicitSolvent = 2
self.phys.myTop.doGBSAOpenMM = 1
self.phys.build()
if self.io.dirty:
self.io.build()
if propFactory.getType(outerscheme) == "method":
# Calculate the forces, store them in force.
if not hasattr(self.phys, "app"):
self.phys.app = ProtoMolApp.ProtoMolApp()
self.phys.app.makeApp(self.phys.myTop, self.phys.posvec, self.phys.velvec, self.forces.energies, dt)
self.phys.updateCOM_Momenta()
outerforcefield.calculateForces(self.phys, self.forces)
self.io.run(self.phys, self.forces, 0, outertime)
self.io.myProp = self
for ii in range(1, steps + 1):
self.phys.app.energies.clear()
self.forces.energies.initialize(self.phys)
propFactory.create(
1,
outerscheme,
self.phys,
self.forces,
self.io,
1,
outertime * Constants.invTimeFactor(),
outerforcefield,
*chain
)
self.phys.time = ii * outertime * Constants.invTimeFactor()
self.io.run(self.phys, self.forces, ii, outertime)
self.phys.updateCOM_Momenta()
# self.phys.app.energies.clear()
# self.forces.forcevec.zero()
else: # Object
setPropagator(
self,
self.phys,
self.forces,
propFactory.applyModifiers(
propFactory.create(1, outerscheme, outertime, outerforcefield, *chain), outerscheme
),
)
shake = False
if params.has_key("shake") and params["shake"] == "on":
shake = True
shakeMod = ModifierShake.ModifierShake(0.000001, 30)
# shakeMod = self.myPropagator.createShakeModifier(0.000001, 30)
self.myPropagator.adoptPostDriftOrNextModifier(shakeMod)
rattle = False
if params.has_key("rattle") and params["rattle"] == "on":
rattle = True
rattleMod = self.myPropagator.createRattleModifier(0.02, 30)
self.myPropagator.adoptPostDriftOrNextModifier(rattleMod)
executePropagator(self, self.phys, self.forces, self.io, steps) # Runs the propagator for a number of steps
if shake:
self.myPropagator.removeModifier(shakeMod)
if rattle:
self.myPropagator.removeModifier(rattleMod)
self.phys.updateCOM_Momenta()
示例7: create
# 需要导入模块: import Constants [as 别名]
# 或者: from Constants import invTimeFactor [as 别名]
def create(self, *args):
"""
Accept a Python tuple containing the propagator name,
timestep, parameter values and force field.
This tuple can thus be various sizes depending on the number
of parameters.
Create and return a corresponding instantiated propagator object,
or method handle.
@type args: tuple
@param args: List of propagator name, dt, parameter values and force field. If the propagation scheme is MTS, this list is followed by the name of the next propagator in the chain and its associated parameters, etc.
@rtype: STS, MTS, or Python method handle
@return: The propagator.
"""
if (not self.registry.has_key(args[0])):
if (type(args[0]).__name__ == 'str'):
print "[MDL] ERROR: UNRECOGNIZED PROPAGATOR: ",
print args[0]
return
if (args.__len__() <= 2):
print "[MDL] WARNING: USING LEAPFROG AS INNER PROPAGATOR"
return self.create("Leapfrog", args[0], args[1])
else:
print "[MDL] WARNING: USING LEAPFROG AS INNER PROPAGATOR"
return self.create("Leapfrog", args[0], args[1], args.__getslice__(2, args.__len__()))
regprop = self.registry[args[0]]
if (regprop['type'] == "protomol"):
arglist = (args[1],) # Timestep or cyclelength
ii = 0
while (ii < regprop['defaults'].__len__()):
if (args[3].has_key(regprop['defaults'][ii])):
arglist += (args[3][regprop['defaults'][ii]],)
else:
arglist += (regprop['defaults'][ii+1],)
ii += 2
arglist += (args[2],)
if (args.__len__() > 4):
# Python referencing - we must save the object we create
# in a temporary array; otherwise when it loses scope it gets
# destroyed
self.objects.append(apply(self.create, args.__getslice__(4, len(args))))
# Now append to the list
arglist += (self.objects[len(self.objects)-1],)
return apply(regprop['constructor'], arglist)
elif (regprop['type'] == "object"):
if (len(args) <= 4):
self.objects.append(apply(regprop['constructor'], (args[1], args[2])))
self.objects[len(self.objects)-1].dt = args[1]*Constants.invTimeFactor()
else:
self.objects.append(apply(self.create, args.__getslice__(4, args.__len__())))
self.objects.append(apply(regprop['constructor'], (args[1], args[2], self.objects[self.objects.__len__()-1])))
self.objects[len(self.objects)-1].cyclelength = args[1]
self.objects[self.objects.__len__()-1].next = self.objects[self.objects.__len__()-2]
if (hasattr(self.objects[self.objects.__len__()-1], "setMOLLYForceGroups")):
self.objects[self.objects.__len__()-1].setMOLLYForceGroups()
ii = 0
while (ii < regprop['defaults'].__len__()):
if (args[3].has_key(regprop['defaults'][ii])):
setattr(self.objects[self.objects.__len__()-1], regprop['defaults'][ii], args[3][regprop['defaults'][ii]])
else:
setattr(self.objects[self.objects.__len__()-1], regprop['defaults'][ii], regprop['defaults'][ii+1])
ii += 2
self.objects[self.objects.__len__()-1].preinitmodifiers = list()
self.objects[self.objects.__len__()-1].postinitmodifiers = list()
self.objects[self.objects.__len__()-1].prerunmodifiers = list()
self.objects[self.objects.__len__()-1].preforcemodifiers = list()
self.objects[self.objects.__len__()-1].postforcemodifiers = list()
self.objects[self.objects.__len__()-1].postrunmodifiers = list()
return self.objects[self.objects.__len__()-1]
elif (regprop['type'] == "method"):
tup = (args[1], args[2], args[3], args[4], args[5], args[6])
ii = 0
while (ii < regprop['defaults'].__len__()):
if (args[7].has_key(regprop['defaults'][ii])):
tup += (args[7][regprop['defaults'][ii]],)
else:
tup += (regprop['defaults'][ii+1],)
ii += 2
ourtup = args
i = 8;
# LOOP WHILE THERE ARE MORE METHODS IN THE CHAIN
while (len(ourtup) > i):
tup += (self.registry[ourtup[i]]['constructor'],) # NEXT METHOD
ii = 0
while (ii < self.registry[ourtup[i]]['defaults'].__len__()):
if (ourtup[i+3].has_key(self.registry[ourtup[8]]['defaults'][ii])):
tup += (ourtup[i+3][ii],)
else:
tup += (self.registry[ourtup[i]]['defaults'][ii+1],)
ii += 2
tup += ourtup.__getslice__(i+1,i+3) # dt, ff
ourtup = ourtup.__getslice__(i+4, len(ourtup))
i = 4
self.objects.append(apply(regprop['constructor'], tup))
return self.objects[self.objects.__len__()-1]