本文整理汇总了Java中weka.classifiers.rules.ZeroR.buildClassifier方法的典型用法代码示例。如果您正苦于以下问题:Java ZeroR.buildClassifier方法的具体用法?Java ZeroR.buildClassifier怎么用?Java ZeroR.buildClassifier使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.classifiers.rules.ZeroR
的用法示例。
在下文中一共展示了ZeroR.buildClassifier方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: buildClassifier
import weka.classifiers.rules.ZeroR; //导入方法依赖的package包/类
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances instances) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(instances);
// remove instances with missing class
instances = new Instances(instances);
instances.deleteWithMissingClass();
m_NumClasses = instances.numClasses();
m_ClassType = instances.classAttribute().type();
m_Train = new Instances(instances, 0, instances.numInstances());
// Throw away initial instances until within the specified window size
if ((m_WindowSize > 0) && (instances.numInstances() > m_WindowSize)) {
m_Train = new Instances(m_Train,
m_Train.numInstances()-m_WindowSize,
m_WindowSize);
}
m_NumAttributesUsed = 0.0;
for (int i = 0; i < m_Train.numAttributes(); i++) {
if ((i != m_Train.classIndex()) &&
(m_Train.attribute(i).isNominal() ||
m_Train.attribute(i).isNumeric())) {
m_NumAttributesUsed += 1.0;
}
}
m_NNSearch.setInstances(m_Train);
// Invalidate any currently cross-validation selected k
m_kNNValid = false;
m_defaultModel = new ZeroR();
m_defaultModel.buildClassifier(instances);
}
示例2: buildClassifier
import weka.classifiers.rules.ZeroR; //导入方法依赖的package包/类
/**
* Builds the classifiers.
*
* @param insts the training data.
* @throws Exception if a classifier can't be built
*/
public void buildClassifier(Instances insts) throws Exception {
Instances newInsts;
// can classifier handle the data?
getCapabilities().testWithFail(insts);
// remove instances with missing class
insts = new Instances(insts);
insts.deleteWithMissingClass();
if (m_Classifier == null) {
throw new Exception("No base classifier has been set!");
}
m_ZeroR = new ZeroR();
m_ZeroR.buildClassifier(insts);
int numClassifiers = insts.numClasses() - 1;
numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers;
if (numClassifiers == 1) {
m_Classifiers = Classifier.makeCopies(m_Classifier, 1);
m_Classifiers[0].buildClassifier(insts);
} else {
m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);
m_ClassFilters = new MakeIndicator[numClassifiers];
for (int i = 0; i < m_Classifiers.length; i++) {
m_ClassFilters[i] = new MakeIndicator();
m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1));
m_ClassFilters[i].setValueIndices(""+(i+2)+"-last");
m_ClassFilters[i].setNumeric(false);
m_ClassFilters[i].setInputFormat(insts);
newInsts = Filter.useFilter(insts, m_ClassFilters[i]);
m_Classifiers[i].buildClassifier(newInsts);
}
}
}
示例3: initializeClassifier
import weka.classifiers.rules.ZeroR; //导入方法依赖的package包/类
/**
* Initialize classifier.
*
* @param data the training data
* @throws Exception if the classifier could not be initialized successfully
*/
public void initializeClassifier(Instances data) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
m_Data = new Instances(data);
m_Data.deleteWithMissingClass();
// Add the model for the mean first
m_zeroR = new ZeroR();
m_zeroR.buildClassifier(m_Data);
// only class? -> use only ZeroR model
if (m_Data.numAttributes() == 1) {
System.err.println(
"Cannot build model (only class attribute present in data!), "
+ "using ZeroR model instead!");
m_SuitableData = false;
return;
}
else {
m_SuitableData = true;
}
// Initialize list of classifiers and data
m_Classifiers = new ArrayList<Classifier>(m_NumIterations);
m_Data = residualReplace(m_Data, m_zeroR, false);
// Calculate sum of squared errors
m_SSE = 0;
m_Diff = Double.MAX_VALUE;
for (int i = 0; i < m_Data.numInstances(); i++) {
m_SSE += m_Data.instance(i).weight() *
m_Data.instance(i).classValue() * m_Data.instance(i).classValue();
}
if (m_Debug) {
System.err.println("Sum of squared residuals "
+"(predicting the mean) : " + m_SSE);
}
}
示例4: buildClassifier
import weka.classifiers.rules.ZeroR; //导入方法依赖的package包/类
/**
* Build the classifier on the supplied data
*
* @param data the training data
* @throws Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
super.buildClassifier(data);
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
Instances newData = new Instances(data);
newData.deleteWithMissingClass();
double sum = 0;
double temp_sum = 0;
// Add the model for the mean first
m_zeroR = new ZeroR();
m_zeroR.buildClassifier(newData);
// only class? -> use only ZeroR model
if (newData.numAttributes() == 1) {
System.err.println(
"Cannot build model (only class attribute present in data!), "
+ "using ZeroR model instead!");
m_SuitableData = false;
return;
}
else {
m_SuitableData = true;
}
newData = residualReplace(newData, m_zeroR, false);
for (int i = 0; i < newData.numInstances(); i++) {
sum += newData.instance(i).weight() *
newData.instance(i).classValue() * newData.instance(i).classValue();
}
if (m_Debug) {
System.err.println("Sum of squared residuals "
+"(predicting the mean) : " + sum);
}
m_NumIterationsPerformed = 0;
do {
temp_sum = sum;
// Build the classifier
m_Classifiers[m_NumIterationsPerformed].buildClassifier(newData);
newData = residualReplace(newData, m_Classifiers[m_NumIterationsPerformed], true);
sum = 0;
for (int i = 0; i < newData.numInstances(); i++) {
sum += newData.instance(i).weight() *
newData.instance(i).classValue() * newData.instance(i).classValue();
}
if (m_Debug) {
System.err.println("Sum of squared residuals : "+sum);
}
m_NumIterationsPerformed++;
} while (((temp_sum - sum) > Utils.SMALL) &&
(m_NumIterationsPerformed < m_Classifiers.length));
}