当前位置: 首页>>代码示例>>Java>>正文


Java ZeroR类代码示例

本文整理汇总了Java中weka.classifiers.rules.ZeroR的典型用法代码示例。如果您正苦于以下问题:Java ZeroR类的具体用法?Java ZeroR怎么用?Java ZeroR使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


ZeroR类属于weka.classifiers.rules包,在下文中一共展示了ZeroR类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: resetOptions

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
protected void resetOptions() {
  m_trainInstances = null;
  m_Evaluation = null;
  m_BaseClassifier = new ZeroR();
  m_folds = 5;
  m_seed = 1;
  m_threshold = 0.01;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:9,代码来源:WrapperSubsetEval.java

示例2: buildClassifier

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
  * Generates the classifier.
  *
  * @param instances set of instances serving as training data 
  * @throws Exception if the classifier has not been generated successfully
  */
 public void buildClassifier(Instances instances) throws Exception {
   
   // can classifier handle the data?
   getCapabilities().testWithFail(instances);

   // remove instances with missing class
   instances = new Instances(instances);
   instances.deleteWithMissingClass();
   
   m_NumClasses = instances.numClasses();
   m_ClassType = instances.classAttribute().type();
   m_Train = new Instances(instances, 0, instances.numInstances());

   // Throw away initial instances until within the specified window size
   if ((m_WindowSize > 0) && (instances.numInstances() > m_WindowSize)) {
     m_Train = new Instances(m_Train, 
		      m_Train.numInstances()-m_WindowSize, 
		      m_WindowSize);
   }

   m_NumAttributesUsed = 0.0;
   for (int i = 0; i < m_Train.numAttributes(); i++) {
     if ((i != m_Train.classIndex()) && 
  (m_Train.attribute(i).isNominal() ||
   m_Train.attribute(i).isNumeric())) {
m_NumAttributesUsed += 1.0;
     }
   }
   
   m_NNSearch.setInstances(m_Train);

   // Invalidate any currently cross-validation selected k
   m_kNNValid = false;
   
   m_defaultModel = new ZeroR();
   m_defaultModel.buildClassifier(instances);
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:44,代码来源:IBk.java

示例3: resetOptions

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
protected void resetOptions () {
  m_trainInstances = null;
  m_Evaluation = null;
  m_BaseClassifier = new ZeroR();
  m_folds = 5;
  m_seed = 1;
  m_threshold = 0.01;
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:9,代码来源:WrapperSubsetEval.java

示例4: getFilteredClassifier

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
 * returns the configured FilteredClassifier. Since the base classifier is
 * determined heuristically, derived tests might need to adjust it.
 * 
 * @return the configured FilteredClassifier
 */
protected FilteredClassifier getFilteredClassifier() {
  FilteredClassifier 	result;
  
  result = super.getFilteredClassifier();
  ((NominalToString) result.getFilter()).setAttributeIndexes("1");
  result.setClassifier(new ZeroR());
  
  return result;
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:16,代码来源:NominalToStringTest.java

示例5: resetOptions

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
 * reset to defaults
 */
protected void resetOptions () {
  m_trainingInstances = null;
  m_Evaluation = null;
  m_Classifier = new ZeroR();
  m_holdOutFile = new File("Click to set hold out or test instances");
  m_holdOutInstances = null;
  m_useTraining = false;
}
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:12,代码来源:ClassifierSubsetEval.java

示例6: buildClassifier

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
  * Builds the classifiers.
  *
  * @param insts the training data.
  * @throws Exception if a classifier can't be built
  */
 public void buildClassifier(Instances insts) throws Exception {

   Instances newInsts;

   // can classifier handle the data?
   getCapabilities().testWithFail(insts);

   // remove instances with missing class
   insts = new Instances(insts);
   insts.deleteWithMissingClass();
   
   if (m_Classifier == null) {
     throw new Exception("No base classifier has been set!");
   }
   m_ZeroR = new ZeroR();
   m_ZeroR.buildClassifier(insts);

   int numClassifiers = insts.numClasses() - 1;

   numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers;

   if (numClassifiers == 1) {
     m_Classifiers = Classifier.makeCopies(m_Classifier, 1);
     m_Classifiers[0].buildClassifier(insts);
   } else {
     m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);
     m_ClassFilters = new MakeIndicator[numClassifiers];

     for (int i = 0; i < m_Classifiers.length; i++) {
m_ClassFilters[i] = new MakeIndicator();
m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1));
m_ClassFilters[i].setValueIndices(""+(i+2)+"-last");
m_ClassFilters[i].setNumeric(false);
m_ClassFilters[i].setInputFormat(insts);
newInsts = Filter.useFilter(insts, m_ClassFilters[i]);
m_Classifiers[i].buildClassifier(newInsts);
     }
   }
 }
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:46,代码来源:OrdinalClassClassifier.java

示例7: initializeClassifier

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
  * Initialize classifier.
  *
  * @param data the training data
  * @throws Exception if the classifier could not be initialized successfully
  */
 public void initializeClassifier(Instances data) throws Exception {

   // can classifier handle the data?
   getCapabilities().testWithFail(data);

   // remove instances with missing class
   m_Data = new Instances(data);
   m_Data.deleteWithMissingClass();

   // Add the model for the mean first
   m_zeroR = new ZeroR();
   m_zeroR.buildClassifier(m_Data);
   
   // only class? -> use only ZeroR model
   if (m_Data.numAttributes() == 1) {
     System.err.println(
  "Cannot build model (only class attribute present in data!), "
  + "using ZeroR model instead!");
     m_SuitableData = false;
     return;
   }
   else {
     m_SuitableData = true;
   }
  
   // Initialize list of classifiers and data
   m_Classifiers = new ArrayList<Classifier>(m_NumIterations);
   m_Data = residualReplace(m_Data, m_zeroR, false);

   // Calculate sum of squared errors
   m_SSE = 0;
   m_Diff = Double.MAX_VALUE;
   for (int i = 0; i < m_Data.numInstances(); i++) {
     m_SSE += m_Data.instance(i).weight() *
m_Data.instance(i).classValue() * m_Data.instance(i).classValue();
   }
   if (m_Debug) {
     System.err.println("Sum of squared residuals "
		 +"(predicting the mean) : " + m_SSE);
   }
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:48,代码来源:AdditiveRegression.java

示例8: buildClassifier

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
  * Build the classifier on the supplied data
  *
  * @param data the training data
  * @throws Exception if the classifier could not be built successfully
  */
 public void buildClassifier(Instances data) throws Exception {

   super.buildClassifier(data);

   // can classifier handle the data?
   getCapabilities().testWithFail(data);

   // remove instances with missing class
   Instances newData = new Instances(data);
   newData.deleteWithMissingClass();

   double sum = 0;
   double temp_sum = 0;
   // Add the model for the mean first
   m_zeroR = new ZeroR();
   m_zeroR.buildClassifier(newData);
   
   // only class? -> use only ZeroR model
   if (newData.numAttributes() == 1) {
     System.err.println(
  "Cannot build model (only class attribute present in data!), "
  + "using ZeroR model instead!");
     m_SuitableData = false;
     return;
   }
   else {
     m_SuitableData = true;
   }
   
   newData = residualReplace(newData, m_zeroR, false);
   for (int i = 0; i < newData.numInstances(); i++) {
     sum += newData.instance(i).weight() *
newData.instance(i).classValue() * newData.instance(i).classValue();
   }
   if (m_Debug) {
     System.err.println("Sum of squared residuals "
		 +"(predicting the mean) : " + sum);
   }

   m_NumIterationsPerformed = 0;
   do {
     temp_sum = sum;

     // Build the classifier
     m_Classifiers[m_NumIterationsPerformed].buildClassifier(newData);

     newData = residualReplace(newData, m_Classifiers[m_NumIterationsPerformed], true);
     sum = 0;
     for (int i = 0; i < newData.numInstances(); i++) {
sum += newData.instance(i).weight() *
  newData.instance(i).classValue() * newData.instance(i).classValue();
     }
     if (m_Debug) {
System.err.println("Sum of squared residuals : "+sum);
     }
     m_NumIterationsPerformed++;
   } while (((temp_sum - sum) > Utils.SMALL) && 
     (m_NumIterationsPerformed < m_Classifiers.length));
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:66,代码来源:AdditiveRegression.java

示例9: main

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
public static void main(String[] argv)
{
	runClassifier(new ZeroR(), argv);
}
 
开发者ID:jeheydorn,项目名称:smodelkit,代码行数:5,代码来源:SMODeLKitWrapper.java

示例10: setOptions

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -B &lt;classifier&gt;
 *  class name of the classifier to use for accuracy estimation.
 *  Place any classifier options LAST on the command line
 *  following a "--". eg.:
 *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
 *  (default: weka.classifiers.rules.ZeroR)</pre>
 * 
 * <pre> -T
 *  Use the training data to estimate accuracy.</pre>
 * 
 * <pre> -H &lt;filename&gt;
 *  Name of the hold out/test set to 
 *  estimate accuracy on.</pre>
 * 
 * <pre> 
 * Options specific to scheme weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions (String[] options)
  throws Exception {
  String optionString;
  resetOptions();

  optionString = Utils.getOption('B', options);
  if (optionString.length() == 0)
    optionString = ZeroR.class.getName();
  setClassifier(Classifier.forName(optionString,
		     Utils.partitionOptions(options)));

  optionString = Utils.getOption('H',options);
  if (optionString.length() != 0) {
    setHoldOutFile(new File(optionString));
  }

  setUseTraining(Utils.getFlag('T',options));
}
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:52,代码来源:ClassifierSubsetEval.java

示例11: setOptions

import weka.classifiers.rules.ZeroR; //导入依赖的package包/类
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -B &lt;base learner&gt;
 *  class name of base learner to use for  accuracy estimation.
 *  Place any classifier options LAST on the command line
 *  following a "--". eg.:
 *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
 *  (default: weka.classifiers.rules.ZeroR)</pre>
 * 
 * <pre> -F &lt;num&gt;
 *  number of cross validation folds to use for estimating accuracy.
 *  (default=5)</pre>
 * 
 * <pre> -R &lt;seed&gt;
 *  Seed for cross validation accuracy testimation.
 *  (default = 1)</pre>
 * 
 * <pre> -T &lt;num&gt;
 *  threshold by which to execute another cross validation
 *  (standard deviation---expressed as a percentage of the mean).
 *  (default: 0.01 (1%))</pre>
 * 
 * <pre> 
 * Options specific to scheme weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions (String[] options)
  throws Exception {
  String optionString;
  resetOptions();
  optionString = Utils.getOption('B', options);

  if (optionString.length() == 0)
    optionString = ZeroR.class.getName();
  setClassifier(Classifier.forName(optionString, 
		     Utils.partitionOptions(options)));
  optionString = Utils.getOption('F', options);

  if (optionString.length() != 0) {
    setFolds(Integer.parseInt(optionString));
  }

  optionString = Utils.getOption('R', options);
  if (optionString.length() != 0) {
    setSeed(Integer.parseInt(optionString));
  }

  //       optionString = Utils.getOption('S',options);
  //       if (optionString.length() != 0)
  //         {
  //  	 seed = Integer.parseInt(optionString);
  //         }
  optionString = Utils.getOption('T', options);

  if (optionString.length() != 0) {
    Double temp;
    temp = Double.valueOf(optionString);
    setThreshold(temp.doubleValue());
  }
}
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:74,代码来源:WrapperSubsetEval.java


注:本文中的weka.classifiers.rules.ZeroR类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。