本文整理汇总了Java中org.jtransforms.utils.CommonUtils.rftfsub方法的典型用法代码示例。如果您正苦于以下问题:Java CommonUtils.rftfsub方法的具体用法?Java CommonUtils.rftfsub怎么用?Java CommonUtils.rftfsub使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.jtransforms.utils.CommonUtils
的用法示例。
在下文中一共展示了CommonUtils.rftfsub方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: realForward
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D forward DFT of real data leaving the result in <code>a</code>
* . The physical layout of the output data is as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* forward transform, use <code>realForwardFull</code>. To get back the
* original data, use <code>realInverse</code> on the output of this method.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
*/
public void realForward(double[] a, int offa)
{
if (useLargeArrays) {
realForward(new DoubleLargeArray(a), offa);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
double xi;
if (n > 4) {
CommonUtils.cftfsub(n, a, offa, ip, nw, w);
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
} else if (n == 4) {
CommonUtils.cftx020(a, offa);
}
xi = a[offa] - a[offa + 1];
a[offa] += a[offa + 1];
a[offa + 1] = xi;
break;
case MIXED_RADIX:
rfftf(a, offa);
for (int k = n - 1; k >= 2; k--) {
int idx = offa + k;
double tmp = a[idx];
a[idx] = a[idx - 1];
a[idx - 1] = tmp;
}
break;
case BLUESTEIN:
bluestein_real_forward(a, offa);
break;
}
}
}
示例2: realForward
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D forward DFT of real data leaving the result in <code>a</code>
* . The physical layout of the output data is as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* forward transform, use <code>realForwardFull</code>. To get back the
* original data, use <code>realInverse</code> on the output of this method.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
*/
public void realForward(float[] a, int offa)
{
if (useLargeArrays) {
realForward(new FloatLargeArray(a), offa);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
float xi;
if (n > 4) {
CommonUtils.cftfsub(n, a, offa, ip, nw, w);
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
} else if (n == 4) {
CommonUtils.cftx020(a, offa);
}
xi = a[offa] - a[offa + 1];
a[offa] += a[offa + 1];
a[offa + 1] = xi;
break;
case MIXED_RADIX:
rfftf(a, offa);
for (int k = n - 1; k >= 2; k--) {
int idx = offa + k;
float tmp = a[idx];
a[idx] = a[idx - 1];
a[idx - 1] = tmp;
}
break;
case BLUESTEIN:
bluestein_real_forward(a, offa);
break;
}
}
}
示例3: realInverse
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D inverse DFT of real data leaving the result in <code>a</code>
* . The physical layout of the input data has to be as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* inverse transform, use <code>realInverseFull</code>.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
* @param scale if true then scaling is performed
*/
public void realInverse(double[] a, int offa, boolean scale)
{
if (useLargeArrays) {
realInverse(new DoubleLargeArray(a), offa, scale);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
a[offa + 1] = 0.5 * (a[offa] - a[offa + 1]);
a[offa] -= a[offa + 1];
if (n > 4) {
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
CommonUtils.cftbsub(n, a, offa, ip, nw, w);
} else if (n == 4) {
CommonUtils.cftxc020(a, offa);
}
if (scale) {
CommonUtils.scale(n, 1.0 / (n / 2.0), a, offa, false);
}
break;
case MIXED_RADIX:
for (int k = 2; k < n; k++) {
int idx = offa + k;
double tmp = a[idx - 1];
a[idx - 1] = a[idx];
a[idx] = tmp;
}
rfftb(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0 / n, a, offa, false);
}
break;
case BLUESTEIN:
bluestein_real_inverse(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0 / n, a, offa, false);
}
break;
}
}
}
示例4: realInverse
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D inverse DFT of real data leaving the result in <code>a</code>
* . The physical layout of the input data has to be as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* inverse transform, use <code>realInverseFull</code>.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
* @param scale if true then scaling is performed
*
*/
public void realInverse(float[] a, int offa, boolean scale)
{
if (useLargeArrays) {
realInverse(new FloatLargeArray(a), offa, scale);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
a[offa + 1] = 0.5f * (a[offa] - a[offa + 1]);
a[offa] -= a[offa + 1];
if (n > 4) {
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
CommonUtils.cftbsub(n, a, offa, ip, nw, w);
} else if (n == 4) {
CommonUtils.cftxc020(a, offa);
}
if (scale) {
CommonUtils.scale(n, 1.0f / (n / 2.0f), a, offa, false);
}
break;
case MIXED_RADIX:
for (int k = 2; k < n; k++) {
int idx = offa + k;
float tmp = a[idx - 1];
a[idx - 1] = a[idx];
a[idx] = tmp;
}
rfftb(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0f / n, a, offa, false);
}
break;
case BLUESTEIN:
bluestein_real_inverse(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0f / n, a, offa, false);
}
break;
}
}
}