本文整理汇总了Java中org.jtransforms.utils.CommonUtils.cftbsub方法的典型用法代码示例。如果您正苦于以下问题:Java CommonUtils.cftbsub方法的具体用法?Java CommonUtils.cftbsub怎么用?Java CommonUtils.cftbsub使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.jtransforms.utils.CommonUtils
的用法示例。
在下文中一共展示了CommonUtils.cftbsub方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: complexForward
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D forward DFT of complex data leaving the result in
* <code>a</code>. Complex number is stored as two double values in
* sequence: the real and imaginary part, i.e. the size of the input array
* must be greater or equal 2*n. The physical layout of the input data has
* to be as follows:<br>
*
* <pre>
* a[offa+2*k] = Re[k],
* a[offa+2*k+1] = Im[k], 0<=k<n
* </pre>
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
*/
public void complexForward(double[] a, int offa)
{
if (useLargeArrays) {
complexForward(new DoubleLargeArray(a), offa);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
CommonUtils.cftbsub(2 * n, a, offa, ip, nw, w);
break;
case MIXED_RADIX:
cfftf(a, offa, -1);
break;
case BLUESTEIN:
bluestein_complex(a, offa, -1);
break;
}
}
}
示例2: complexForward
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D forward DFT of complex data leaving the result in
* <code>a</code>. Complex number is stored as two float values in
* sequence: the real and imaginary part, i.e. the size of the input array
* must be greater or equal 2*n. The physical layout of the input data has
* to be as follows:<br>
*
* <pre>
* a[offa+2*k] = Re[k],
* a[offa+2*k+1] = Im[k], 0<=k<n
* </pre>
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
*/
public void complexForward(float[] a, int offa)
{
if (useLargeArrays) {
complexForward(new FloatLargeArray(a), offa);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
CommonUtils.cftbsub(2 * n, a, offa, ip, nw, w);
break;
case MIXED_RADIX:
cfftf(a, offa, -1);
break;
case BLUESTEIN:
bluestein_complex(a, offa, -1);
break;
}
}
}
示例3: bluesteini
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
private void bluesteini()
{
int k = 0;
double arg;
double pi_n = PI / n;
bk1[0] = 1;
bk1[1] = 0;
for (int i = 1; i < n; i++) {
k += 2 * i - 1;
if (k >= 2 * n) {
k -= 2 * n;
}
arg = pi_n * k;
bk1[2 * i] = cos(arg);
bk1[2 * i + 1] = sin(arg);
}
double scale = 1.0 / nBluestein;
bk2[0] = bk1[0] * scale;
bk2[1] = bk1[1] * scale;
for (int i = 2; i < 2 * n; i += 2) {
bk2[i] = bk1[i] * scale;
bk2[i + 1] = bk1[i + 1] * scale;
bk2[2 * nBluestein - i] = bk2[i];
bk2[2 * nBluestein - i + 1] = bk2[i + 1];
}
CommonUtils.cftbsub(2 * nBluestein, bk2, 0, ip, nw, w);
}
示例4: bluesteinil
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
private void bluesteinil()
{
long k = 0;
double arg;
double pi_n = PI / nl;
bk1l.setDouble(0, 1);
bk1l.setDouble(1, 0);
for (int i = 1; i < nl; i++) {
k += 2 * i - 1;
if (k >= 2 * nl) {
k -= 2 * nl;
}
arg = pi_n * k;
bk1l.setDouble(2 * i, cos(arg));
bk1l.setDouble(2 * i + 1, sin(arg));
}
double scale = 1.0 / nBluesteinl;
bk2l.setDouble(0, bk1l.getDouble(0) * scale);
bk2l.setDouble(1, bk1l.getDouble(1) * scale);
for (int i = 2; i < 2 * nl; i += 2) {
bk2l.setDouble(i, bk1l.getDouble(i) * scale);
bk2l.setDouble(i + 1, bk1l.getDouble(i + 1) * scale);
bk2l.setDouble(2 * nBluesteinl - i, bk2l.getDouble(i));
bk2l.setDouble(2 * nBluesteinl - i + 1, bk2l.getDouble(i + 1));
}
CommonUtils.cftbsub(2 * nBluesteinl, bk2l, 0, ipl, nwl, wl);
}
示例5: bluesteini
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
private void bluesteini()
{
int k = 0;
float arg;
float pi_n = PI / n;
bk1[0] = 1;
bk1[1] = 0;
for (int i = 1; i < n; i++) {
k += 2 * i - 1;
if (k >= 2 * n) {
k -= 2 * n;
}
arg = pi_n * k;
bk1[2 * i] = (float) cos(arg);
bk1[2 * i + 1] = (float) sin(arg);
}
float scale = 1.0f / nBluestein;
bk2[0] = bk1[0] * scale;
bk2[1] = bk1[1] * scale;
for (int i = 2; i < 2 * n; i += 2) {
bk2[i] = bk1[i] * scale;
bk2[i + 1] = bk1[i + 1] * scale;
bk2[2 * nBluestein - i] = bk2[i];
bk2[2 * nBluestein - i + 1] = bk2[i + 1];
}
CommonUtils.cftbsub(2 * nBluestein, bk2, 0, ip, nw, w);
}
示例6: bluesteinil
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
private void bluesteinil()
{
long k = 0;
float arg;
float pi_n = PI / nl;
bk1l.setFloat(0, 1);
bk1l.setFloat(1, 0);
for (int i = 1; i < nl; i++) {
k += 2 * i - 1;
if (k >= 2 * nl) {
k -= 2 * nl;
}
arg = pi_n * k;
bk1l.setFloat(2 * i, (float) cos(arg));
bk1l.setFloat(2 * i + 1, (float) sin(arg));
}
float scale = 1.0f / nBluesteinl;
bk2l.setFloat(0, bk1l.getFloat(0) * scale);
bk2l.setFloat(1, bk1l.getFloat(1) * scale);
for (int i = 2; i < 2 * nl; i += 2) {
bk2l.setFloat(i, bk1l.getFloat(i) * scale);
bk2l.setFloat(i + 1, bk1l.getFloat(i + 1) * scale);
bk2l.setFloat(2 * nBluesteinl - i, bk2l.getFloat(i));
bk2l.setFloat(2 * nBluesteinl - i + 1, bk2l.getFloat(i + 1));
}
CommonUtils.cftbsub(2 * nBluesteinl, bk2l, 0, ipl, nwl, wl);
}
示例7: realInverse
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D inverse DFT of real data leaving the result in <code>a</code>
* . The physical layout of the input data has to be as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* inverse transform, use <code>realInverseFull</code>.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
* @param scale if true then scaling is performed
*/
public void realInverse(double[] a, int offa, boolean scale)
{
if (useLargeArrays) {
realInverse(new DoubleLargeArray(a), offa, scale);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
a[offa + 1] = 0.5 * (a[offa] - a[offa + 1]);
a[offa] -= a[offa + 1];
if (n > 4) {
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
CommonUtils.cftbsub(n, a, offa, ip, nw, w);
} else if (n == 4) {
CommonUtils.cftxc020(a, offa);
}
if (scale) {
CommonUtils.scale(n, 1.0 / (n / 2.0), a, offa, false);
}
break;
case MIXED_RADIX:
for (int k = 2; k < n; k++) {
int idx = offa + k;
double tmp = a[idx - 1];
a[idx - 1] = a[idx];
a[idx] = tmp;
}
rfftb(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0 / n, a, offa, false);
}
break;
case BLUESTEIN:
bluestein_real_inverse(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0 / n, a, offa, false);
}
break;
}
}
}
示例8: realInverse
import org.jtransforms.utils.CommonUtils; //导入方法依赖的package包/类
/**
* Computes 1D inverse DFT of real data leaving the result in <code>a</code>
* . The physical layout of the input data has to be as follows:<br>
*
* if n is even then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<n/2
* a[offa+2*k+1] = Im[k], 0<k<n/2
* a[offa+1] = Re[n/2]
* </pre>
*
* if n is odd then
*
* <pre>
* a[offa+2*k] = Re[k], 0<=k<(n+1)/2
* a[offa+2*k+1] = Im[k], 0<k<(n-1)/2
* a[offa+1] = Im[(n-1)/2]
* </pre>
*
* This method computes only half of the elements of the real transform. The
* other half satisfies the symmetry condition. If you want the full real
* inverse transform, use <code>realInverseFull</code>.
*
* @param a data to transform
* @param offa index of the first element in array <code>a</code>
* @param scale if true then scaling is performed
*
*/
public void realInverse(float[] a, int offa, boolean scale)
{
if (useLargeArrays) {
realInverse(new FloatLargeArray(a), offa, scale);
} else {
if (n == 1) {
return;
}
switch (plan) {
case SPLIT_RADIX:
a[offa + 1] = 0.5f * (a[offa] - a[offa + 1]);
a[offa] -= a[offa + 1];
if (n > 4) {
CommonUtils.rftfsub(n, a, offa, nc, w, nw);
CommonUtils.cftbsub(n, a, offa, ip, nw, w);
} else if (n == 4) {
CommonUtils.cftxc020(a, offa);
}
if (scale) {
CommonUtils.scale(n, 1.0f / (n / 2.0f), a, offa, false);
}
break;
case MIXED_RADIX:
for (int k = 2; k < n; k++) {
int idx = offa + k;
float tmp = a[idx - 1];
a[idx - 1] = a[idx];
a[idx] = tmp;
}
rfftb(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0f / n, a, offa, false);
}
break;
case BLUESTEIN:
bluestein_real_inverse(a, offa);
if (scale) {
CommonUtils.scale(n, 1.0f / n, a, offa, false);
}
break;
}
}
}