本文整理汇总了Java中org.jblas.FloatMatrix.zeros方法的典型用法代码示例。如果您正苦于以下问题:Java FloatMatrix.zeros方法的具体用法?Java FloatMatrix.zeros怎么用?Java FloatMatrix.zeros使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.jblas.FloatMatrix
的用法示例。
在下文中一共展示了FloatMatrix.zeros方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: initialize
import org.jblas.FloatMatrix; //导入方法依赖的package包/类
/**
* Initializes the GRU layer
* @param hiddenW1 multiplies x_t in the expression to calculate candidate activation
* @param hiddenU1 multiplies r_t.h_t-1 in the expression to calculate candidate activation
* @param updateW1 multiplies x_t in the expression to calculate update gate
* @param updateU1 multiplies h_t-1 in the expression to calculate update gate
* @param resetW1 multiplies x_t in the expression to calculate reset gate
* @param resetU1 multiplies h_t-1 in the expression to calculate reset gate
* @param hiddenBias1 bias values of the neurons to calculate the candidate activation
* @param updateBias1 bias values of the neurons to calculate the update gate
* @param resetBias1 bias values of the neurons to calculate the reset gate
* @param activationFunction1 activation function to calculate the candidate activation
* @param updateActivation1 activation function to calculate the update gate
* @param resetActivation1 activation function to calculate the reset gate
*/
public void initialize(float[][] hiddenW1, float[][] hiddenU1, float[][] updateW1, float[][] updateU1, float[][] resetW1, float[][] resetU1, float[] hiddenBias1, float[] updateBias1, float[] resetBias1, Activation activationFunction1, Activation updateActivation1, Activation resetActivation1) {
this.hiddenW = new FloatMatrix(hiddenW1);
this.hiddenU = new FloatMatrix(hiddenU1);
this.resetW = new FloatMatrix(resetW1);
this.resetU = new FloatMatrix(resetU1);
this.updateW = new FloatMatrix(updateW1);
this.updateU = new FloatMatrix(updateU1);
this.hiddenBias = new FloatMatrix(hiddenBias1);
this.updateBias = new FloatMatrix(updateBias1);
this.resetBias = new FloatMatrix(resetBias1);
this.output = FloatMatrix.zeros(this.hiddenU.rows);
this.activationFunction = activationFunction1;
this.updateActivation = updateActivation1;
this.resetActivation = resetActivation1;
this.updateGate = FloatMatrix.zeros(this.hiddenBias.length);
this.resetGate = FloatMatrix.zeros(this.hiddenBias.length);
}
示例2: processRNNList
import org.jblas.FloatMatrix; //导入方法依赖的package包/类
/**
* Process the RNN in a batch manner
*/
public void processRNNList() {
if (this.binnedDataList.isEmpty()) {
return;
}
FloatMatrix tempOutput;
tempOutput = FloatMatrix.zeros(this.getnChannels());
for (float[] currentBinnedData : this.binnedDataList) {
tempOutput = this.rnnetwork.output(currentBinnedData);
}
this.networkOutput = RNNfilterExpFeatures.DMToFloat(tempOutput);
this.label = RNNfilterExpFeatures.indexOfMaxValue(this.networkOutput);
}
示例3: resetLayer
import org.jblas.FloatMatrix; //导入方法依赖的package包/类
@Override
public void resetLayer() {
this.output = FloatMatrix.zeros(this.Uo.rows);
this.memoryCell = FloatMatrix.zeros(this.Uc.rows);
this.forgetGate = FloatMatrix.zeros(this.Uf.rows);
this.inputGate = FloatMatrix.zeros(this.Ui.rows);
}
示例4: processRNNList
import org.jblas.FloatMatrix; //导入方法依赖的package包/类
/**
* Process the RNN in a batch manner
*/
public void processRNNList() {
if (this.binnedDataList.isEmpty()) {
return;
}
FloatMatrix tempOutput;
tempOutput = FloatMatrix.zeros(this.getnChannels());
for (int[] currentBinnedData : this.binnedDataList) {
tempOutput = this.rnnetwork.output(RNNfilter.intToFloat(currentBinnedData));
}
this.networkOutput = RNNfilter.DMToFloat(tempOutput);
this.label = RNNfilter.indexOfMaxValue(this.networkOutput);
}
示例5: initParameters
import org.jblas.FloatMatrix; //导入方法依赖的package包/类
/**
* Init context, item and feature latent vectors with a normal distribution and
* set biases to 0.
* @param numFeatures number of additional features
* @param dimensions number of latent factors
*/
public void initParameters(int numFeatures, int dimensions) {
logger.info("initializing parameters...");
biases = FloatMatrix.zeros(numFeatures);
latentVectors = new FloatMatrix[numFeatures];
for (int i = 0; i < numFeatures; ++i)
latentVectors[i] = gaussVector(dimensions).divi(dimensions);
}