本文整理汇总了Java中org.apache.hadoop.conf.Configuration.getInt方法的典型用法代码示例。如果您正苦于以下问题:Java Configuration.getInt方法的具体用法?Java Configuration.getInt怎么用?Java Configuration.getInt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.hadoop.conf.Configuration
的用法示例。
在下文中一共展示了Configuration.getInt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: create
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public static HBaseAsyncOperation create(Configuration configuration) throws IOException {
boolean enableAsyncMethod = configuration.getBoolean(ENABLE_ASYNC_METHOD,
DEFAULT_ENABLE_ASYNC_METHOD);
LOGGER.info("hbase.client.async.enable: " + enableAsyncMethod);
if (!enableAsyncMethod) {
return DisabledHBaseAsyncOperation.INSTANCE;
}
int queueSize = configuration.getInt(ASYNC_IN_QUEUE_SIZE, DEFAULT_ASYNC_IN_QUEUE_SIZE);
if (configuration.get(ASYNC_PERIODIC_FLUSH_TIME, null) == null) {
configuration.setInt(ASYNC_PERIODIC_FLUSH_TIME, DEFAULT_ASYNC_PERIODIC_FLUSH_TIME);
}
if (configuration.get(ASYNC_RETRY_COUNT, null) == null) {
configuration.setInt(ASYNC_RETRY_COUNT, DEFAULT_ASYNC_RETRY_COUNT);
}
return new HBaseAsyncTemplate(configuration, queueSize);
}
示例2: CryptoExtension
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public CryptoExtension(Configuration conf,
KeyProviderCryptoExtension keyProviderCryptoExtension) {
this.keyProviderCryptoExtension = keyProviderCryptoExtension;
encKeyVersionQueue =
new ValueQueue<KeyProviderCryptoExtension.EncryptedKeyVersion>(
conf.getInt(KMS_KEY_CACHE_SIZE,
KMS_KEY_CACHE_SIZE_DEFAULT),
conf.getFloat(KMS_KEY_CACHE_LOW_WATERMARK,
KMS_KEY_CACHE_LOW_WATERMARK_DEFAULT),
conf.getInt(KMS_KEY_CACHE_EXPIRY_MS,
KMS_KEY_CACHE_EXPIRY_DEFAULT),
conf.getInt(KMS_KEY_CACHE_NUM_REFILL_THREADS,
KMS_KEY_CACHE_NUM_REFILL_THREADS_DEFAULT),
SyncGenerationPolicy.LOW_WATERMARK, new EncryptedQueueRefiller()
);
}
示例3: CheckpointConf
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public CheckpointConf(Configuration conf) {
checkpointCheckPeriod = conf.getLong(
DFS_NAMENODE_CHECKPOINT_CHECK_PERIOD_KEY,
DFS_NAMENODE_CHECKPOINT_CHECK_PERIOD_DEFAULT);
checkpointPeriod = conf.getLong(DFS_NAMENODE_CHECKPOINT_PERIOD_KEY,
DFS_NAMENODE_CHECKPOINT_PERIOD_DEFAULT);
checkpointTxnCount = conf.getLong(DFS_NAMENODE_CHECKPOINT_TXNS_KEY,
DFS_NAMENODE_CHECKPOINT_TXNS_DEFAULT);
maxRetriesOnMergeError = conf.getInt(DFS_NAMENODE_CHECKPOINT_MAX_RETRIES_KEY,
DFS_NAMENODE_CHECKPOINT_MAX_RETRIES_DEFAULT);
legacyOivImageDir = conf.get(DFS_NAMENODE_LEGACY_OIV_IMAGE_DIR_KEY);
warnForDeprecatedConfigs(conf);
}
示例4: RESTServlet
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Constructor with existing configuration
* @param conf existing configuration
* @param userProvider the login user provider
* @throws IOException
*/
RESTServlet(final Configuration conf,
final UserProvider userProvider) throws IOException {
this.realUser = userProvider.getCurrent().getUGI();
this.conf = conf;
registerCustomFilter(conf);
int cleanInterval = conf.getInt(CLEANUP_INTERVAL, 10 * 1000);
int maxIdleTime = conf.getInt(MAX_IDLETIME, 10 * 60 * 1000);
connectionCache = new ConnectionCache(
conf, userProvider, cleanInterval, maxIdleTime);
if (supportsProxyuser()) {
ProxyUsers.refreshSuperUserGroupsConfiguration(conf);
}
}
示例5: serviceInit
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public void serviceInit(Configuration conf) throws Exception {
nmExpireInterval =
conf.getInt(YarnConfiguration.RM_NM_EXPIRY_INTERVAL_MS,
YarnConfiguration.DEFAULT_RM_NM_EXPIRY_INTERVAL_MS);
configuredMaximumAllocationWaitTime =
conf.getLong(YarnConfiguration.RM_WORK_PRESERVING_RECOVERY_SCHEDULING_WAIT_MS,
YarnConfiguration.DEFAULT_RM_WORK_PRESERVING_RECOVERY_SCHEDULING_WAIT_MS);
createReleaseCache();
super.serviceInit(conf);
}
示例6: map
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/** Partitions sigma into parts */
@Override
protected void map(NullWritable nw, SummationWritable sigma, final Context context
) throws IOException, InterruptedException {
final Configuration conf = context.getConfiguration();
final int nParts = conf.getInt(N_PARTS, 0);
final Summation[] parts = sigma.getElement().partition(nParts);
for(int i = 0; i < parts.length; ++i) {
context.write(new IntWritable(i), new SummationWritable(parts[i]));
LOG.info("parts[" + i + "] = " + parts[i]);
}
}
示例7: createGeneralBloomAtWrite
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Creates a new general (Row or RowCol) Bloom filter at the time of
* {@link org.apache.hadoop.hbase.regionserver.StoreFile} writing.
*
* @param conf
* @param cacheConf
* @param bloomType
* @param maxKeys an estimate of the number of keys we expect to insert.
* Irrelevant if compound Bloom filters are enabled.
* @param writer the HFile writer
* @return the new Bloom filter, or null in case Bloom filters are disabled
* or when failed to create one.
*/
public static BloomFilterWriter createGeneralBloomAtWrite(Configuration conf,
CacheConfig cacheConf, BloomType bloomType, int maxKeys,
HFile.Writer writer) {
if (!isGeneralBloomEnabled(conf)) {
LOG.trace("Bloom filters are disabled by configuration for "
+ writer.getPath()
+ (conf == null ? " (configuration is null)" : ""));
return null;
} else if (bloomType == BloomType.NONE) {
LOG.trace("Bloom filter is turned off for the column family");
return null;
}
float err = getErrorRate(conf);
// In case of row/column Bloom filter lookups, each lookup is an OR if two
// separate lookups. Therefore, if each lookup's false positive rate is p,
// the resulting false positive rate is err = 1 - (1 - p)^2, and
// p = 1 - sqrt(1 - err).
if (bloomType == BloomType.ROWCOL) {
err = (float) (1 - Math.sqrt(1 - err));
}
int maxFold = conf.getInt(IO_STOREFILE_BLOOM_MAX_FOLD,
MAX_ALLOWED_FOLD_FACTOR);
// Do we support compound bloom filters?
// In case of compound Bloom filters we ignore the maxKeys hint.
CompoundBloomFilterWriter bloomWriter = new CompoundBloomFilterWriter(getBloomBlockSize(conf),
err, Hash.getHashType(conf), maxFold, cacheConf.shouldCacheBloomsOnWrite(),
bloomType == BloomType.ROWCOL ? KeyValue.COMPARATOR : KeyValue.RAW_COMPARATOR);
writer.addInlineBlockWriter(bloomWriter);
return bloomWriter;
}
示例8: HeapMemStoreLAB
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public HeapMemStoreLAB(Configuration conf) {
chunkSize = conf.getInt(CHUNK_SIZE_KEY, CHUNK_SIZE_DEFAULT);
maxAlloc = conf.getInt(MAX_ALLOC_KEY, MAX_ALLOC_DEFAULT);
this.chunkPool = MemStoreChunkPool.getPool(conf);
// if we don't exclude allocations >CHUNK_SIZE, we'd infiniteloop on one!
Preconditions.checkArgument(
maxAlloc <= chunkSize,
MAX_ALLOC_KEY + " must be less than " + CHUNK_SIZE_KEY);
}
示例9: serviceInit
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
protected void serviceInit(Configuration conf) throws Exception {
super.serviceInit(conf);
taskTimeOut = conf.getInt(MRJobConfig.TASK_TIMEOUT, 5 * 60 * 1000);
taskTimeOutCheckInterval =
conf.getInt(MRJobConfig.TASK_TIMEOUT_CHECK_INTERVAL_MS, 30 * 1000);
}
示例10: getMaxChunksTolerable
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
private static int getMaxChunksTolerable(Configuration conf) {
int maxChunksTolerable = conf.getInt(
DistCpConstants.CONF_LABEL_MAX_CHUNKS_TOLERABLE,
DistCpConstants.MAX_CHUNKS_TOLERABLE_DEFAULT);
if (maxChunksTolerable <= 0) {
LOG.warn(DistCpConstants.CONF_LABEL_MAX_CHUNKS_TOLERABLE +
" should be positive. Fall back to default value: "
+ DistCpConstants.MAX_CHUNKS_TOLERABLE_DEFAULT);
maxChunksTolerable = DistCpConstants.MAX_CHUNKS_TOLERABLE_DEFAULT;
}
return maxChunksTolerable;
}
示例11: AsyncProcess
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public AsyncProcess(ClusterConnection hc, Configuration conf, ExecutorService pool,
RpcRetryingCallerFactory rpcCaller, boolean useGlobalErrors, RpcControllerFactory rpcFactory) {
if (hc == null) {
throw new IllegalArgumentException("HConnection cannot be null.");
}
this.connection = hc;
this.pool = pool;
this.globalErrors = useGlobalErrors ? new BatchErrors() : null;
this.id = COUNTER.incrementAndGet();
this.pause = conf.getLong(HConstants.HBASE_CLIENT_PAUSE,
HConstants.DEFAULT_HBASE_CLIENT_PAUSE);
this.numTries = conf.getInt(HConstants.HBASE_CLIENT_RETRIES_NUMBER,
HConstants.DEFAULT_HBASE_CLIENT_RETRIES_NUMBER);
this.timeout = conf.getInt(HConstants.HBASE_RPC_TIMEOUT_KEY,
HConstants.DEFAULT_HBASE_RPC_TIMEOUT);
this.primaryCallTimeoutMicroseconds = conf.getInt(PRIMARY_CALL_TIMEOUT_KEY, 10000);
this.maxTotalConcurrentTasks = conf.getInt(HConstants.HBASE_CLIENT_MAX_TOTAL_TASKS,
HConstants.DEFAULT_HBASE_CLIENT_MAX_TOTAL_TASKS);
this.maxConcurrentTasksPerServer = conf.getInt(HConstants.HBASE_CLIENT_MAX_PERSERVER_TASKS,
HConstants.DEFAULT_HBASE_CLIENT_MAX_PERSERVER_TASKS);
this.maxConcurrentTasksPerRegion = conf.getInt(HConstants.HBASE_CLIENT_MAX_PERREGION_TASKS,
HConstants.DEFAULT_HBASE_CLIENT_MAX_PERREGION_TASKS);
this.startLogErrorsCnt =
conf.getInt(START_LOG_ERRORS_AFTER_COUNT_KEY, DEFAULT_START_LOG_ERRORS_AFTER_COUNT);
if (this.maxTotalConcurrentTasks <= 0) {
throw new IllegalArgumentException("maxTotalConcurrentTasks=" + maxTotalConcurrentTasks);
}
if (this.maxConcurrentTasksPerServer <= 0) {
throw new IllegalArgumentException("maxConcurrentTasksPerServer=" +
maxConcurrentTasksPerServer);
}
if (this.maxConcurrentTasksPerRegion <= 0) {
throw new IllegalArgumentException("maxConcurrentTasksPerRegion=" +
maxConcurrentTasksPerRegion);
}
// Server tracker allows us to do faster, and yet useful (hopefully), retries.
// However, if we are too useful, we might fail very quickly due to retry count limit.
// To avoid this, we are going to cheat for now (see HBASE-7659), and calculate maximum
// retry time if normal retries were used. Then we will retry until this time runs out.
// If we keep hitting one server, the net effect will be the incremental backoff, and
// essentially the same number of retries as planned. If we have to do faster retries,
// we will do more retries in aggregate, but the user will be none the wiser.
this.serverTrackerTimeout = 0;
for (int i = 0; i < this.numTries; ++i) {
serverTrackerTimeout += ConnectionUtils.getPauseTime(this.pause, i);
}
this.rpcCallerFactory = rpcCaller;
this.rpcFactory = rpcFactory;
}
示例12: FsDatasetImpl
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* An FSDataset has a directory where it loads its data files.
*/
FsDatasetImpl(DataNode datanode, DataStorage storage, Configuration conf
) throws IOException {
this.fsRunning = true;
this.datanode = datanode;
this.dataStorage = storage;
this.conf = conf;
// The number of volumes required for operation is the total number
// of volumes minus the number of failed volumes we can tolerate.
final int volFailuresTolerated =
conf.getInt(DFSConfigKeys.DFS_DATANODE_FAILED_VOLUMES_TOLERATED_KEY,
DFSConfigKeys.DFS_DATANODE_FAILED_VOLUMES_TOLERATED_DEFAULT);
String[] dataDirs = conf.getTrimmedStrings(DFSConfigKeys.DFS_DATANODE_DATA_DIR_KEY);
Collection<StorageLocation> dataLocations = DataNode.getStorageLocations(conf);
List<VolumeFailureInfo> volumeFailureInfos = getInitialVolumeFailureInfos(
dataLocations, storage);
int volsConfigured = (dataDirs == null) ? 0 : dataDirs.length;
int volsFailed = volumeFailureInfos.size();
this.validVolsRequired = volsConfigured - volFailuresTolerated;
if (volFailuresTolerated < 0 || volFailuresTolerated >= volsConfigured) {
throw new DiskErrorException("Invalid volume failure "
+ " config value: " + volFailuresTolerated);
}
if (volsFailed > volFailuresTolerated) {
throw new DiskErrorException("Too many failed volumes - "
+ "current valid volumes: " + storage.getNumStorageDirs()
+ ", volumes configured: " + volsConfigured
+ ", volumes failed: " + volsFailed
+ ", volume failures tolerated: " + volFailuresTolerated);
}
storageMap = new ConcurrentHashMap<String, DatanodeStorage>();
volumeMap = new ReplicaMap(this);
ramDiskReplicaTracker = RamDiskReplicaTracker.getInstance(conf, this);
@SuppressWarnings("unchecked")
final VolumeChoosingPolicy<FsVolumeImpl> blockChooserImpl =
ReflectionUtils.newInstance(conf.getClass(
DFSConfigKeys.DFS_DATANODE_FSDATASET_VOLUME_CHOOSING_POLICY_KEY,
RoundRobinVolumeChoosingPolicy.class,
VolumeChoosingPolicy.class), conf);
volumes = new FsVolumeList(volumeFailureInfos, datanode.getBlockScanner(),
blockChooserImpl);
asyncDiskService = new FsDatasetAsyncDiskService(datanode, this);
asyncLazyPersistService = new RamDiskAsyncLazyPersistService(datanode);
deletingBlock = new HashMap<String, Set<Long>>();
for (int idx = 0; idx < storage.getNumStorageDirs(); idx++) {
addVolume(dataLocations, storage.getStorageDir(idx));
}
setupAsyncLazyPersistThreads();
cacheManager = new FsDatasetCache(this);
// Start the lazy writer once we have built the replica maps.
lazyWriter = new Daemon(new LazyWriter(conf));
lazyWriter.start();
registerMBean(datanode.getDatanodeUuid());
localFS = FileSystem.getLocal(conf);
blockPinningEnabled = conf.getBoolean(
DFSConfigKeys.DFS_DATANODE_BLOCK_PINNING_ENABLED,
DFSConfigKeys.DFS_DATANODE_BLOCK_PINNING_ENABLED_DEFAULT);
}
示例13: startThreads
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Create each component in the pipeline and start it.
* @param conf Configuration data, no keys specific to this context
* @param traceIn Either a Path to the trace data or "-" for
* stdin
* @param ioPath <ioPath>/input/ is the dir from which input data is
* read and <ioPath>/distributedCache/ is the gridmix
* distributed cache directory.
* @param scratchDir Path into which job output is written
* @param startFlag Semaphore for starting job trace pipeline
*/
@SuppressWarnings("unchecked")
private void startThreads(Configuration conf, String traceIn, Path ioPath,
Path scratchDir, CountDownLatch startFlag, UserResolver userResolver)
throws IOException {
try {
Path inputDir = getGridmixInputDataPath(ioPath);
GridmixJobSubmissionPolicy policy = getJobSubmissionPolicy(conf);
LOG.info(" Submission policy is " + policy.name());
statistics = new Statistics(conf, policy.getPollingInterval(), startFlag);
monitor = createJobMonitor(statistics, conf);
int noOfSubmitterThreads =
(policy == GridmixJobSubmissionPolicy.SERIAL)
? 1
: Runtime.getRuntime().availableProcessors() + 1;
int numThreads = conf.getInt(GRIDMIX_SUB_THR, noOfSubmitterThreads);
int queueDep = conf.getInt(GRIDMIX_QUE_DEP, 5);
submitter = createJobSubmitter(monitor, numThreads, queueDep,
new FilePool(conf, inputDir), userResolver,
statistics);
distCacheEmulator = new DistributedCacheEmulator(conf, ioPath);
factory = createJobFactory(submitter, traceIn, scratchDir, conf,
startFlag, userResolver);
factory.jobCreator.setDistCacheEmulator(distCacheEmulator);
if (policy == GridmixJobSubmissionPolicy.SERIAL) {
statistics.addJobStatsListeners(factory);
} else {
statistics.addClusterStatsObservers(factory);
}
// add the gridmix run summarizer to the statistics
statistics.addJobStatsListeners(summarizer.getExecutionSummarizer());
statistics.addClusterStatsObservers(summarizer.getClusterSummarizer());
monitor.start();
submitter.start();
}catch(Exception e) {
LOG.error(" Exception at start " ,e);
throw new IOException(e);
}
}
示例14: getValue
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/** @return the value or, if it is null, return the default from conf. */
public short getValue(final Configuration conf) {
return getValue() != null? getValue()
: (short)conf.getInt(DFS_REPLICATION_KEY, DFS_REPLICATION_DEFAULT);
}
示例15: getRandomTextDataGeneratorListSize
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Get the configured random text data generator's list size.
*/
static int getRandomTextDataGeneratorListSize(Configuration conf) {
return conf.getInt(GRIDMIX_DATAGEN_RANDOMTEXT_LISTSIZE, DEFAULT_LIST_SIZE);
}