本文整理汇总了Java中org.apache.hadoop.conf.Configuration.getFloat方法的典型用法代码示例。如果您正苦于以下问题:Java Configuration.getFloat方法的具体用法?Java Configuration.getFloat怎么用?Java Configuration.getFloat使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.hadoop.conf.Configuration
的用法示例。
在下文中一共展示了Configuration.getFloat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: initialize
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public void initialize(Configuration conf, ResourceUsageMetrics metrics,
ResourceCalculatorPlugin monitor,
Progressive progress) {
this.monitor = monitor;
this.progress = progress;
// get the target CPU usage
targetCpuUsage = metrics.getCumulativeCpuUsage();
if (targetCpuUsage <= 0 ) {
enabled = false;
return;
} else {
enabled = true;
}
emulationInterval = conf.getFloat(CPU_EMULATION_PROGRESS_INTERVAL,
DEFAULT_EMULATION_FREQUENCY);
// calibrate the core cpu-usage utility
emulatorCore.calibrate(monitor, targetCpuUsage);
// initialize the states
lastSeenProgress = 0;
lastSeenCpuUsage = 0;
}
示例2: RegionMonitor
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
public RegionMonitor(Connection connection, String[] monitorTargets, boolean useRegExp,
Sink sink, ExecutorService executor, boolean writeSniffing, TableName writeTableName,
boolean treatFailureAsError) {
super(connection, monitorTargets, useRegExp, sink, executor, treatFailureAsError);
Configuration conf = connection.getConfiguration();
this.writeSniffing = writeSniffing;
this.writeTableName = writeTableName;
this.writeDataTTL =
conf.getInt(HConstants.HBASE_CANARY_WRITE_DATA_TTL_KEY, DEFAULT_WRITE_DATA_TTL);
this.regionsLowerLimit =
conf.getFloat(HConstants.HBASE_CANARY_WRITE_PERSERVER_REGIONS_LOWERLIMIT_KEY, 1.0f);
this.regionsUpperLimit =
conf.getFloat(HConstants.HBASE_CANARY_WRITE_PERSERVER_REGIONS_UPPERLIMIT_KEY, 1.5f);
this.checkPeriod =
conf.getInt(HConstants.HBASE_CANARY_WRITE_TABLE_CHECK_PERIOD_KEY,
DEFAULT_WRITE_TABLE_CHECK_PERIOD);
}
示例3: CompactionConfiguration
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
CompactionConfiguration(Configuration conf, StoreConfigInformation storeConfigInfo) {
this.conf = conf;
this.storeConfigInfo = storeConfigInfo;
maxCompactSize = conf.getLong(HBASE_HSTORE_COMPACTION_MAX_SIZE_KEY, Long.MAX_VALUE);
offPeakMaxCompactSize = conf.getLong(HBASE_HSTORE_COMPACTION_MAX_SIZE_OFFPEAK_KEY,
maxCompactSize);
minCompactSize = conf.getLong(HBASE_HSTORE_COMPACTION_MIN_SIZE_KEY,
storeConfigInfo.getMemstoreFlushSize());
minFilesToCompact = Math.max(2, conf.getInt(HBASE_HSTORE_COMPACTION_MIN_KEY,
/*old name*/ conf.getInt("hbase.hstore.compactionThreshold", 3)));
maxFilesToCompact = conf.getInt(HBASE_HSTORE_COMPACTION_MAX_KEY, 10);
compactionRatio = conf.getFloat(HBASE_HSTORE_COMPACTION_RATIO_KEY, 1.2F);
offPeakCompactionRatio = conf.getFloat(HBASE_HSTORE_COMPACTION_RATIO_OFFPEAK_KEY, 5.0F);
throttlePoint = conf.getLong("hbase.regionserver.thread.compaction.throttle",
2 * maxFilesToCompact * storeConfigInfo.getMemstoreFlushSize());
majorCompactionPeriod = conf.getLong(HConstants.MAJOR_COMPACTION_PERIOD, 1000*60*60*24*7);
// Make it 0.5 so jitter has us fall evenly either side of when the compaction should run
majorCompactionJitter = conf.getFloat("hbase.hregion.majorcompaction.jitter", 0.50F);
minLocalityToForceCompact = conf.getFloat(HBASE_HSTORE_MIN_LOCALITY_TO_SKIP_MAJOR_COMPACT, 0f);
LOG.info(this);
}
示例4: setConf
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public void setConf(Configuration conf) {
this.conf = conf;
this.maximumStepSize = conf.getFloat(MAX_STEP_KEY, DEFAULT_MAX_STEP_VALUE);
this.minimumStepSize = conf.getFloat(MIN_STEP_KEY, DEFAULT_MIN_STEP_VALUE);
this.step = this.maximumStepSize;
this.sufficientMemoryLevel = conf.getFloat(SUFFICIENT_MEMORY_LEVEL_KEY,
DEFAULT_SUFFICIENT_MEMORY_LEVEL_VALUE);
this.tunerLookupPeriods = conf.getInt(LOOKUP_PERIODS_KEY, DEFAULT_LOOKUP_PERIODS);
this.blockCachePercentMinRange = conf.getFloat(BLOCK_CACHE_SIZE_MIN_RANGE_KEY,
conf.getFloat(HFILE_BLOCK_CACHE_SIZE_KEY, HConstants.HFILE_BLOCK_CACHE_SIZE_DEFAULT));
this.blockCachePercentMaxRange = conf.getFloat(BLOCK_CACHE_SIZE_MAX_RANGE_KEY,
conf.getFloat(HFILE_BLOCK_CACHE_SIZE_KEY, HConstants.HFILE_BLOCK_CACHE_SIZE_DEFAULT));
this.globalMemStorePercentMinRange = conf.getFloat(MEMSTORE_SIZE_MIN_RANGE_KEY,
HeapMemorySizeUtil.getGlobalMemStorePercent(conf, false));
this.globalMemStorePercentMaxRange = conf.getFloat(MEMSTORE_SIZE_MAX_RANGE_KEY,
HeapMemorySizeUtil.getGlobalMemStorePercent(conf, false));
// Default value of periods to ignore is number of lookup periods
this.numPeriodsToIgnore = conf.getInt(NUM_PERIODS_TO_IGNORE, this.tunerLookupPeriods);
this.rollingStatsForCacheMisses = new RollingStatCalculator(this.tunerLookupPeriods);
this.rollingStatsForFlushes = new RollingStatCalculator(this.tunerLookupPeriods);
this.rollingStatsForEvictions = new RollingStatCalculator(this.tunerLookupPeriods);
this.rollingStatsForTunerSteps = new RollingStatCalculator(this.tunerLookupPeriods);
}
示例5: initRetryCache
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@VisibleForTesting
static RetryCache initRetryCache(Configuration conf) {
boolean enable = conf.getBoolean(DFS_NAMENODE_ENABLE_RETRY_CACHE_KEY,
DFS_NAMENODE_ENABLE_RETRY_CACHE_DEFAULT);
LOG.info("Retry cache on namenode is " + (enable ? "enabled" : "disabled"));
if (enable) {
float heapPercent = conf.getFloat(
DFS_NAMENODE_RETRY_CACHE_HEAP_PERCENT_KEY,
DFS_NAMENODE_RETRY_CACHE_HEAP_PERCENT_DEFAULT);
long entryExpiryMillis = conf.getLong(
DFS_NAMENODE_RETRY_CACHE_EXPIRYTIME_MILLIS_KEY,
DFS_NAMENODE_RETRY_CACHE_EXPIRYTIME_MILLIS_DEFAULT);
LOG.info("Retry cache will use " + heapPercent
+ " of total heap and retry cache entry expiry time is "
+ entryExpiryMillis + " millis");
long entryExpiryNanos = entryExpiryMillis * 1000 * 1000;
return new RetryCache("NameNodeRetryCache", heapPercent,
entryExpiryNanos);
}
return null;
}
示例6: setConf
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public synchronized void setConf(Configuration conf) {
balancedSpaceThreshold = conf.getLong(
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_THRESHOLD_KEY,
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_THRESHOLD_DEFAULT);
balancedPreferencePercent = conf.getFloat(
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_PREFERENCE_FRACTION_KEY,
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_PREFERENCE_FRACTION_DEFAULT);
LOG.info("Available space volume choosing policy initialized: " +
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_THRESHOLD_KEY +
" = " + balancedSpaceThreshold + ", " +
DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_PREFERENCE_FRACTION_KEY +
" = " + balancedPreferencePercent);
if (balancedPreferencePercent > 1.0) {
LOG.warn("The value of " + DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_PREFERENCE_FRACTION_KEY +
" is greater than 1.0 but should be in the range 0.0 - 1.0");
}
if (balancedPreferencePercent < 0.5) {
LOG.warn("The value of " + DFS_DATANODE_AVAILABLE_SPACE_VOLUME_CHOOSING_POLICY_BALANCED_SPACE_PREFERENCE_FRACTION_KEY +
" is less than 0.5 so volumes with less available disk space will receive more block allocations");
}
}
示例7: initialize
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public void initialize(Configuration conf, FileSystem fs) {
this.fs = fs;
this.deletionInterval = (long)(conf.getFloat(
FS_TRASH_INTERVAL_KEY, FS_TRASH_INTERVAL_DEFAULT)
* MSECS_PER_MINUTE);
this.emptierInterval = (long)(conf.getFloat(
FS_TRASH_CHECKPOINT_INTERVAL_KEY, FS_TRASH_CHECKPOINT_INTERVAL_DEFAULT)
* MSECS_PER_MINUTE);
}
示例8: initBloomFilter
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
private synchronized void initBloomFilter(Configuration conf) {
numKeys = conf.getInt("io.mapfile.bloom.size", 1024 * 1024);
// vector size should be <code>-kn / (ln(1 - c^(1/k)))</code> bits for
// single key, where <code> is the number of hash functions,
// <code>n</code> is the number of keys and <code>c</code> is the desired
// max. error rate.
// Our desired error rate is by default 0.005, i.e. 0.5%
float errorRate = conf.getFloat("io.mapfile.bloom.error.rate", 0.005f);
vectorSize = (int)Math.ceil((double)(-HASH_COUNT * numKeys) /
Math.log(1.0 - Math.pow(errorRate, 1.0/HASH_COUNT)));
bloomFilter = new DynamicBloomFilter(vectorSize, HASH_COUNT,
Hash.getHashType(conf), numKeys);
}
示例9: HeapMemoryManager
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@VisibleForTesting
HeapMemoryManager(ResizableBlockCache blockCache, FlushRequester memStoreFlusher,
Server server, RegionServerAccounting regionServerAccounting) {
Configuration conf = server.getConfiguration();
this.blockCache = blockCache;
this.memStoreFlusher = memStoreFlusher;
this.server = server;
this.regionServerAccounting = regionServerAccounting;
this.tunerOn = doInit(conf);
this.defaultChorePeriod = conf.getInt(HBASE_RS_HEAP_MEMORY_TUNER_PERIOD,
HBASE_RS_HEAP_MEMORY_TUNER_DEFAULT_PERIOD);
this.heapOccupancyLowWatermark = conf.getFloat(HConstants.HEAP_OCCUPANCY_LOW_WATERMARK_KEY,
HConstants.DEFAULT_HEAP_OCCUPANCY_LOW_WATERMARK);
}
示例10: ReplicationSinkManager
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Instantiate for a single replication peer cluster.
* @param conn connection to the peer cluster
* @param peerClusterId identifier of the peer cluster
* @param endpoint replication endpoint for inter cluster replication
* @param conf HBase configuration, used for determining replication source ratio and bad peer
* threshold
*/
public ReplicationSinkManager(HConnection conn, String peerClusterId,
HBaseReplicationEndpoint endpoint, Configuration conf) {
this.conn = conn;
this.peerClusterId = peerClusterId;
this.endpoint = endpoint;
this.badReportCounts = Maps.newHashMap();
this.ratio = conf.getFloat("replication.source.ratio", DEFAULT_REPLICATION_SOURCE_RATIO);
this.badSinkThreshold = conf.getInt("replication.bad.sink.threshold",
DEFAULT_BAD_SINK_THRESHOLD);
this.random = new Random();
}
示例11: getBestLocations
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* This computes the locations to be passed from the InputSplit. MR/Yarn schedulers does not take
* weights into account, thus will treat every location passed from the input split as equal. We
* do not want to blindly pass all the locations, since we are creating one split per region, and
* the region's blocks are all distributed throughout the cluster unless favorite node assignment
* is used. On the expected stable case, only one location will contain most of the blocks as
* local.
* On the other hand, in favored node assignment, 3 nodes will contain highly local blocks. Here
* we are doing a simple heuristic, where we will pass all hosts which have at least 80%
* (hbase.tablesnapshotinputformat.locality.cutoff.multiplier) as much block locality as the top
* host with the best locality.
*/
public static List<String> getBestLocations(
Configuration conf, HDFSBlocksDistribution blockDistribution) {
List<String> locations = new ArrayList<String>(3);
HostAndWeight[] hostAndWeights = blockDistribution.getTopHostsWithWeights();
if (hostAndWeights.length == 0) {
return locations;
}
HostAndWeight topHost = hostAndWeights[0];
locations.add(topHost.getHost());
// Heuristic: filter all hosts which have at least cutoffMultiplier % of block locality
double cutoffMultiplier
= conf.getFloat(LOCALITY_CUTOFF_MULTIPLIER, DEFAULT_LOCALITY_CUTOFF_MULTIPLIER);
double filterWeight = topHost.getWeight() * cutoffMultiplier;
for (int i = 1; i < hostAndWeights.length; i++) {
if (hostAndWeights[i].getWeight() >= filterWeight) {
locations.add(hostAndWeights[i].getHost());
} else {
break;
}
}
return locations;
}
示例12: getL2BlockCacheHeapPercent
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* @param conf
* @return The on heap size for L2 block cache.
*/
public static float getL2BlockCacheHeapPercent(Configuration conf) {
float l2CachePercent = 0.0F;
String bucketCacheIOEngineName = conf.get(HConstants.BUCKET_CACHE_IOENGINE_KEY, null);
// L2 block cache can be on heap when IOEngine is "heap"
if (bucketCacheIOEngineName != null && bucketCacheIOEngineName.startsWith("heap")) {
float bucketCachePercentage = conf.getFloat(HConstants.BUCKET_CACHE_SIZE_KEY, 0F);
MemoryUsage mu = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
l2CachePercent = bucketCachePercentage < 1 ? bucketCachePercentage
: (bucketCachePercentage * 1024 * 1024) / mu.getMax();
}
return l2CachePercent;
}
示例13: getGlobalMemStorePercent
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
/**
* Retrieve global memstore configured size as percentage of total heap.
* @param c
* @param logInvalid
*/
public static float getGlobalMemStorePercent(final Configuration c, final boolean logInvalid) {
float limit = c.getFloat(MEMSTORE_SIZE_KEY,
c.getFloat(MEMSTORE_SIZE_OLD_KEY, DEFAULT_MEMSTORE_SIZE));
if (limit > 0.8f || limit <= 0.0f) {
if (logInvalid) {
LOG.warn("Setting global memstore limit to default of " + DEFAULT_MEMSTORE_SIZE
+ " because supplied value outside allowed range of (0 -> 0.8]");
}
limit = DEFAULT_MEMSTORE_SIZE;
}
return limit;
}
示例14: CacheManager
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
CacheManager(FSNamesystem namesystem, Configuration conf,
BlockManager blockManager) {
this.namesystem = namesystem;
this.blockManager = blockManager;
this.nextDirectiveId = 1;
this.maxListCachePoolsResponses = conf.getInt(
DFS_NAMENODE_LIST_CACHE_POOLS_NUM_RESPONSES,
DFS_NAMENODE_LIST_CACHE_POOLS_NUM_RESPONSES_DEFAULT);
this.maxListCacheDirectivesNumResponses = conf.getInt(
DFS_NAMENODE_LIST_CACHE_DIRECTIVES_NUM_RESPONSES,
DFS_NAMENODE_LIST_CACHE_DIRECTIVES_NUM_RESPONSES_DEFAULT);
scanIntervalMs = conf.getLong(
DFS_NAMENODE_PATH_BASED_CACHE_REFRESH_INTERVAL_MS,
DFS_NAMENODE_PATH_BASED_CACHE_REFRESH_INTERVAL_MS_DEFAULT);
float cachedBlocksPercent = conf.getFloat(
DFS_NAMENODE_PATH_BASED_CACHE_BLOCK_MAP_ALLOCATION_PERCENT,
DFS_NAMENODE_PATH_BASED_CACHE_BLOCK_MAP_ALLOCATION_PERCENT_DEFAULT);
if (cachedBlocksPercent < MIN_CACHED_BLOCKS_PERCENT) {
LOG.info("Using minimum value {} for {}", MIN_CACHED_BLOCKS_PERCENT,
DFS_NAMENODE_PATH_BASED_CACHE_BLOCK_MAP_ALLOCATION_PERCENT);
cachedBlocksPercent = MIN_CACHED_BLOCKS_PERCENT;
}
this.cachedBlocks = new LightWeightGSet<CachedBlock, CachedBlock>(
LightWeightGSet.computeCapacity(cachedBlocksPercent,
"cachedBlocks"));
}
示例15: initialize
import org.apache.hadoop.conf.Configuration; //导入方法依赖的package包/类
@Override
public void initialize(Configuration conf, FSClusterStats stats,
NetworkTopology clusterMap,
Host2NodesMap host2datanodeMap) {
this.considerLoad = conf.getBoolean(
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDERLOAD_KEY, true);
this.stats = stats;
this.clusterMap = clusterMap;
this.host2datanodeMap = host2datanodeMap;
this.heartbeatInterval = conf.getLong(
DFSConfigKeys.DFS_HEARTBEAT_INTERVAL_KEY,
DFSConfigKeys.DFS_HEARTBEAT_INTERVAL_DEFAULT) * 1000;
this.tolerateHeartbeatMultiplier = conf.getInt(
DFSConfigKeys.DFS_NAMENODE_TOLERATE_HEARTBEAT_MULTIPLIER_KEY,
DFSConfigKeys.DFS_NAMENODE_TOLERATE_HEARTBEAT_MULTIPLIER_DEFAULT);
this.staleInterval = conf.getLong(
DFSConfigKeys.DFS_NAMENODE_STALE_DATANODE_INTERVAL_KEY,
DFSConfigKeys.DFS_NAMENODE_STALE_DATANODE_INTERVAL_DEFAULT);
this.considerDfsUsedPercentTresholdPercent = conf.getInt(
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_THRESHOLD,
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_THRESHOLD_DEFAULT);
this.considerDfsUsedPercent = conf.getBoolean(
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_KEY,
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_DEFAULT);
this.considerDfsUsedPercentFactor = conf.getFloat(
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_FACTOR,
DFSConfigKeys.DFS_NAMENODE_REPLICATION_CONSIDER_DFS_USED_PERCENT_FACTOR_DEFAULT);
}