本文整理汇总了Java中org.apache.commons.math3.util.FastMath.ulp方法的典型用法代码示例。如果您正苦于以下问题:Java FastMath.ulp方法的具体用法?Java FastMath.ulp怎么用?Java FastMath.ulp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.ulp方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: sanityChecks
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** Check the integration span.
* @param eqn set of differential equations
* @param t target time for the integration
* @exception NumberIsTooSmallException if integration span is too small
* @exception DimensionMismatchException if adaptive step size integrators
* tolerance arrays dimensions are not compatible with equations settings
*/
protected void sanityChecks(final FieldODEState<T> eqn, final T t)
throws NumberIsTooSmallException, DimensionMismatchException {
final double threshold = 1000 * FastMath.ulp(FastMath.max(FastMath.abs(eqn.getTime().getReal()),
FastMath.abs(t.getReal())));
final double dt = eqn.getTime().subtract(t).abs().getReal();
if (dt <= threshold) {
throw new NumberIsTooSmallException(LocalizedFormats.TOO_SMALL_INTEGRATION_INTERVAL,
dt, threshold, false);
}
}
示例2: sanityChecks
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** Check the integration span.
* @param equations set of differential equations
* @param t target time for the integration
* @exception NumberIsTooSmallException if integration span is too small
* @exception DimensionMismatchException if adaptive step size integrators
* tolerance arrays dimensions are not compatible with equations settings
*/
protected void sanityChecks(final ExpandableStatefulODE equations, final double t)
throws NumberIsTooSmallException, DimensionMismatchException {
final double threshold = 1000 * FastMath.ulp(FastMath.max(FastMath.abs(equations.getTime()),
FastMath.abs(t)));
final double dt = FastMath.abs(equations.getTime() - t);
if (dt <= threshold) {
throw new NumberIsTooSmallException(LocalizedFormats.TOO_SMALL_INTEGRATION_INTERVAL,
dt, threshold, false);
}
}
示例3: value
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** {@inheritDoc} */
public double value(double x) {
return FastMath.ulp(x);
}
示例4: FiniteDifferencesDifferentiator
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/**
* Build a differentiator with number of points and step size when independent variable is bounded.
* <p>
* When the independent variable is bounded (tLower < t < tUpper), the sampling
* points used for differentiation will be adapted to ensure the constraint holds
* even near the boundaries. This means the sample will not be centered anymore in
* these cases. At an extreme case, computing derivatives exactly at the lower bound
* will lead the sample to be entirely on the right side of the derivation point.
* </p>
* <p>
* Note that the boundaries are considered to be excluded for function evaluation.
* </p>
* <p>
* Beware that wrong settings for the finite differences differentiator
* can lead to highly unstable and inaccurate results, especially for
* high derivation orders. Using very small step sizes is often a
* <em>bad</em> idea.
* </p>
* @param nbPoints number of points to use
* @param stepSize step size (gap between each point)
* @param tLower lower bound for independent variable (may be {@code Double.NEGATIVE_INFINITY}
* if there are no lower bounds)
* @param tUpper upper bound for independent variable (may be {@code Double.POSITIVE_INFINITY}
* if there are no upper bounds)
* @exception NotPositiveException if {@code stepsize <= 0} (note that
* {@link NotPositiveException} extends {@link NumberIsTooSmallException})
* @exception NumberIsTooSmallException {@code nbPoint <= 1}
* @exception NumberIsTooLargeException {@code stepSize * (nbPoints - 1) >= tUpper - tLower}
*/
public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize,
final double tLower, final double tUpper)
throws NotPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
if (nbPoints <= 1) {
throw new NumberIsTooSmallException(stepSize, 1, false);
}
this.nbPoints = nbPoints;
if (stepSize <= 0) {
throw new NotPositiveException(stepSize);
}
this.stepSize = stepSize;
halfSampleSpan = 0.5 * stepSize * (nbPoints - 1);
if (2 * halfSampleSpan >= tUpper - tLower) {
throw new NumberIsTooLargeException(2 * halfSampleSpan, tUpper - tLower, false);
}
final double safety = FastMath.ulp(halfSampleSpan);
this.tMin = tLower + halfSampleSpan + safety;
this.tMax = tUpper - halfSampleSpan - safety;
}