本文整理汇总了Java中org.apache.commons.math3.util.FastMath.cosh方法的典型用法代码示例。如果您正苦于以下问题:Java FastMath.cosh方法的具体用法?Java FastMath.cosh怎么用?Java FastMath.cosh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.cosh方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: cosh
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** Compute hyperbolic cosine of a derivative structure.
* @param operand array holding the operand
* @param operandOffset offset of the operand in its array
* @param result array where result must be stored (for
* hyperbolic cosine the result array <em>cannot</em> be the input
* array)
* @param resultOffset offset of the result in its array
*/
public void cosh(final double[] operand, final int operandOffset,
final double[] result, final int resultOffset) {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.cosh(operand[operandOffset]);
if (order > 0) {
function[1] = FastMath.sinh(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = function[i - 2];
}
}
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
}
示例2: sinh
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** Compute hyperbolic sine of a derivative structure.
* @param operand array holding the operand
* @param operandOffset offset of the operand in its array
* @param result array where result must be stored (for
* hyperbolic sine the result array <em>cannot</em> be the input
* array)
* @param resultOffset offset of the result in its array
*/
public void sinh(final double[] operand, final int operandOffset,
final double[] result, final int resultOffset) {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.sinh(operand[operandOffset]);
if (order > 0) {
function[1] = FastMath.cosh(operand[operandOffset]);
for (int i = 2; i <= order; ++i) {
function[i] = function[i - 2];
}
}
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
}
示例3: value
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** {@inheritDoc} */
public double value(double x) {
return FastMath.cosh(x);
}
示例4: cosh
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** {@inheritDoc} */
public SparseGradient cosh() {
return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives);
}
示例5: sinh
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/** {@inheritDoc} */
public SparseGradient sinh() {
return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives);
}
示例6: tan
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
* tangent</a> of this complex number.
* Implements the formula:
* <pre>
* <code>
* tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
* </code>
* </pre>
* where the (real) functions on the right-hand side are
* {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and
* {@link FastMath#sinh}.
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is {@code NaN}.
* </p>
* Infinite (or critical) values in real or imaginary parts of the input may
* result in infinite or NaN values returned in parts of the result.
* <pre>
* Examples:
* <code>
* tan(a ± INFINITY i) = 0 ± i
* tan(±INFINITY + bi) = NaN + NaN i
* tan(±INFINITY ± INFINITY i) = NaN + NaN i
* tan(±π/2 + 0 i) = ±INFINITY + NaN i
* </code>
* </pre>
*
* @return the tangent of {@code this}.
* @since 1.2
*/
public Complex tan() {
if (isNaN || Double.isInfinite(real)) {
return NaN;
}
if (imaginary > 20.0) {
return createComplex(0.0, 1.0);
}
if (imaginary < -20.0) {
return createComplex(0.0, -1.0);
}
double real2 = 2.0 * real;
double imaginary2 = 2.0 * imaginary;
double d = FastMath.cos(real2) + FastMath.cosh(imaginary2);
return createComplex(FastMath.sin(real2) / d,
FastMath.sinh(imaginary2) / d);
}
示例7: tanh
import org.apache.commons.math3.util.FastMath; //导入方法依赖的package包/类
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
* hyperbolic tangent</a> of this complex number.
* Implements the formula:
* <pre>
* <code>
* tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
* </code>
* </pre>
* where the (real) functions on the right-hand side are
* {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and
* {@link FastMath#sinh}.
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is {@code NaN}.
* </p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.
* <pre>
* Examples:
* <code>
* tanh(a ± INFINITY i) = NaN + NaN i
* tanh(±INFINITY + bi) = ±1 + 0 i
* tanh(±INFINITY ± INFINITY i) = NaN + NaN i
* tanh(0 + (π/2)i) = NaN + INFINITY i
* </code>
* </pre>
*
* @return the hyperbolic tangent of {@code this}.
* @since 1.2
*/
public Complex tanh() {
if (isNaN || Double.isInfinite(imaginary)) {
return NaN;
}
if (real > 20.0) {
return createComplex(1.0, 0.0);
}
if (real < -20.0) {
return createComplex(-1.0, 0.0);
}
double real2 = 2.0 * real;
double imaginary2 = 2.0 * imaginary;
double d = FastMath.cosh(real2) + FastMath.cos(imaginary2);
return createComplex(FastMath.sinh(real2) / d,
FastMath.sin(imaginary2) / d);
}