本文整理汇总了Java中org.apache.commons.math3.optim.PointValuePair.getPoint方法的典型用法代码示例。如果您正苦于以下问题:Java PointValuePair.getPoint方法的具体用法?Java PointValuePair.getPoint怎么用?Java PointValuePair.getPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.optim.PointValuePair
的用法示例。
在下文中一共展示了PointValuePair.getPoint方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: retrieveResults
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
private void retrieveResults(PointValuePair result) {
int rows=suppliers.getValue();
int cols=recipients.getValue();
if (excessCheckbox.isSelected())
cols++;
double[] data=result.getPoint();
for (int i = 0; i < rows; i++) {
setVectorElement(excess,i,0);
}
for (int i = 0; i < data.length; i++) {
int x=i%cols;
int y=i/cols;
if(x<recipients.getValue())
setMatrixElement(this.result,y,x,data[i]);
else
setVectorElement(this.excess,y,data[i]);
}
double value=result.getValue();
cost.setText(String.valueOf(value));
}
示例2: solve
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Override
public void solve(double[] dir)
{
/* Check the dimension of the vectorspace where lives dir */
if (dir.length != d)
throw new LinearProgrammingSolverException(dddirMessage);
/* Update the constraints set of the simplex solver if modification */
if (lcListModified)
{
List <LinearConstraint> lcList = new ArrayList <LinearConstraint>();
int n = dirList.size();
for (int i = 0 ; i < n ; i++) lcList.add(new LinearConstraint(dirList.get(i), Relationship.LEQ, valList.get(i)));
lcSet = new LinearConstraintSet(lcList);
}
/* Evaluation */
PointValuePair res = solver.optimize(new LinearObjectiveFunction(dir, 0), lcSet, GoalType.MAXIMIZE);
/* Update the results and the flags */
point = res.getPoint ();
value = res.getSecond ();
evaluated = true;
lcListModified = false;
}
示例3: testMath283
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Test
public void testMath283() {
// fails because MultiDirectional.iterateSimplex is looping forever
// the while(true) should be replaced with a convergence check
SimplexOptimizer optimizer = new SimplexOptimizer(1e-14, 1e-14);
final Gaussian2D function = new Gaussian2D(0, 0, 1);
PointValuePair estimate = optimizer.optimize(new MaxEval(1000),
new ObjectiveFunction(function),
GoalType.MAXIMIZE,
new InitialGuess(function.getMaximumPosition()),
new MultiDirectionalSimplex(2));
final double EPSILON = 1e-5;
final double expectedMaximum = function.getMaximum();
final double actualMaximum = estimate.getValue();
Assert.assertEquals(expectedMaximum, actualMaximum, EPSILON);
final double[] expectedPosition = function.getMaximumPosition();
final double[] actualPosition = estimate.getPoint();
Assert.assertEquals(expectedPosition[0], actualPosition[0], EPSILON );
Assert.assertEquals(expectedPosition[1], actualPosition[1], EPSILON );
}
示例4: doTest
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
/**
* @param func Function to optimize.
* @param optimum Expected optimum.
* @param init Starting point.
* @param goal Minimization or maximization.
* @param fTol Tolerance (relative error on the objective function) for
* "Powell" algorithm.
* @param pointTol Tolerance for checking that the optimum is correct.
*/
private void doTest(MultivariateFunction func,
double[] optimum,
double[] init,
GoalType goal,
double fTol,
double pointTol) {
final PowellOptimizer optim = new PowellOptimizer(fTol, Math.ulp(1d));
final PointValuePair result = optim.optimize(new MaxEval(1000),
new ObjectiveFunction(func),
goal,
new InitialGuess(init));
final double[] point = result.getPoint();
for (int i = 0, dim = optimum.length; i < dim; i++) {
Assert.assertEquals("found[" + i + "]=" + point[i] + " value=" + result.getValue(),
optimum[i], point[i], pointTol);
}
}
示例5: testMath293
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Test
public void testMath293() {
LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 0.8, 0.2, 0.7, 0.3, 0.4, 0.6}, 0 );
Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
constraints.add(new LinearConstraint(new double[] { 1, 0, 1, 0, 1, 0 }, Relationship.EQ, 30.0));
constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 1, 0, 1 }, Relationship.EQ, 30.0));
constraints.add(new LinearConstraint(new double[] { 0.8, 0.2, 0.0, 0.0, 0.0, 0.0 }, Relationship.GEQ, 10.0));
constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.7, 0.3, 0.0, 0.0 }, Relationship.GEQ, 10.0));
constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }, Relationship.GEQ, 10.0));
SimplexSolver solver = new SimplexSolver();
PointValuePair solution1 = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints),
GoalType.MAXIMIZE, new NonNegativeConstraint(true));
Assert.assertEquals(15.7143, solution1.getPoint()[0], .0001);
Assert.assertEquals(0.0, solution1.getPoint()[1], .0001);
Assert.assertEquals(14.2857, solution1.getPoint()[2], .0001);
Assert.assertEquals(0.0, solution1.getPoint()[3], .0001);
Assert.assertEquals(0.0, solution1.getPoint()[4], .0001);
Assert.assertEquals(30.0, solution1.getPoint()[5], .0001);
Assert.assertEquals(40.57143, solution1.getValue(), .0001);
double valA = 0.8 * solution1.getPoint()[0] + 0.2 * solution1.getPoint()[1];
double valB = 0.7 * solution1.getPoint()[2] + 0.3 * solution1.getPoint()[3];
double valC = 0.4 * solution1.getPoint()[4] + 0.6 * solution1.getPoint()[5];
f = new LinearObjectiveFunction(new double[] { 0.8, 0.2, 0.7, 0.3, 0.4, 0.6}, 0 );
constraints = new ArrayList<LinearConstraint>();
constraints.add(new LinearConstraint(new double[] { 1, 0, 1, 0, 1, 0 }, Relationship.EQ, 30.0));
constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 1, 0, 1 }, Relationship.EQ, 30.0));
constraints.add(new LinearConstraint(new double[] { 0.8, 0.2, 0.0, 0.0, 0.0, 0.0 }, Relationship.GEQ, valA));
constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.7, 0.3, 0.0, 0.0 }, Relationship.GEQ, valB));
constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }, Relationship.GEQ, valC));
PointValuePair solution2 = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints),
GoalType.MAXIMIZE, new NonNegativeConstraint(true));
Assert.assertEquals(40.57143, solution2.getValue(), .0001);
}
示例6: validSolution
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
private static boolean validSolution(PointValuePair solution, List<LinearConstraint> constraints, double epsilon) {
double[] vals = solution.getPoint();
for (LinearConstraint c : constraints) {
double[] coeffs = c.getCoefficients().toArray();
double result = 0.0d;
for (int i = 0; i < vals.length; i++) {
result += vals[i] * coeffs[i];
}
switch (c.getRelationship()) {
case EQ:
if (!Precision.equals(result, c.getValue(), epsilon)) {
return false;
}
break;
case GEQ:
if (Precision.compareTo(result, c.getValue(), epsilon) < 0) {
return false;
}
break;
case LEQ:
if (Precision.compareTo(result, c.getValue(), epsilon) > 0) {
return false;
}
break;
}
}
return true;
}
示例7: run
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Override
public void run() throws Exception {
// Let's find optimum for beta0, beta1, beta2
NelderMeadSimplex optMethod = new NelderMeadSimplex(3);
/*
SimplexOptimizer optimizer = new SimplexOptimizer(1e-5, 1e-10);
final PointValuePair optimum =
optimizer.optimize(
new MaxEval(150),
new ObjectiveFunction(this),
GoalType.MAXIMIZE,
new InitialGuess(new double[]{ Math.log(.6), Math.log(.2), Math.log(0.05) }),
optMethod);
*/
// new NelderMeadSimplex(new double[]{ 0.2, 0.2 }));
/*
SimplexOptimizer optimizer = new SimplexOptimizer(1e-5, 1e-10);
final PointValuePair optimum =
optimizer.optimize(
new MaxEval(200),
new ObjectiveFunction(this),
GoalType.MAXIMIZE,
new InitialGuess(new double[]{ .6, .2, 0.05 }),
optMethod);
*/
//PowellOptimizer optimizer = new PowellOptimizer(1e-8, 1e-5, 1e-4, 1e-4);
BOBYQAOptimizer optimizer = new BOBYQAOptimizer(2*3+1+2); // 2*point.length + 1+additional
final PointValuePair optimum =
optimizer.optimize(
new MaxEval(150),
new ObjectiveFunction(this),
GoalType.MAXIMIZE,
new InitialGuess(new double[]{ 1.0, 1.0, 1.0 }),
new SimpleBounds(new double[] { 0.0 , 0.0 , 0.0 },
new double[] { 3.5 , 3.5, 3.5 }));
double[] point = optimum.getPoint();
System.out.print("point= ");
for(int i=0; i< point.length; i++) System.out.print(" "+ point[i]);
System.out.println(" ");
System.out.println("value = "+ optimum.getValue());
}
示例8: process
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Override
public Data process(Data data) {
if (initialRKey != null) {
initialR = (double) data.get(initialRKey);
}
if (initialXKey != null) {
initialX = (double) data.get(initialXKey);
}
if (initialYKey != null) {
initialX = (double) data.get(initialYKey);
}
double[] photoncharge = (double[]) data.get(photonchargeKey);
int[] cleaningPixel = (int[]) data.get(cleaningPixelKey);
LightDistributionNegLogLikelihood negLnL = new LightDistributionNegLogLikelihood(photoncharge, cleaningPixel);
ObjectiveFunction ob_negLnL = new ObjectiveFunction(negLnL);
MaxEval maxEval = new MaxEval(50000);
double[] initials = new double[]{
initialR,
initialX,
initialY,
initialSigma,
initialRho,
initialPhi,
initialEps,
};
InitialGuess start_values = new InitialGuess(initials);
PowellOptimizer optimizer = new PowellOptimizer(1e-4, 1e-2);
double[] result_point = new double[initials.length];
try {
PointValuePair result = optimizer.optimize(ob_negLnL, GoalType.MINIMIZE, start_values, maxEval);
result_point = result.getPoint();
} catch (TooManyEvaluationsException e) {
for (int i = 0; i < result_point.length; i++) {
result_point[i] = Double.NaN;
}
}
double r = result_point[0];
double x = result_point[1];
double y = result_point[2];
double sigma = result_point[3];
double rho = result_point[4];
double phi = result_point[5];
double eps = result_point[6];
double[] test = new double[Constants.N_PIXELS];
for (int pix = 0; pix < Constants.N_PIXELS; pix++) {
test[pix] = negLnL.photon_expectance_pixel(pix, r, x, y, sigma, rho, phi, eps);
}
data.put("photon_expectance_fit", test);
data.put(outputKey + "r", r);
data.put(outputKey + "x", x);
data.put(outputKey + "y", y);
data.put(outputKey + "sigma", sigma);
data.put(outputKey + "rho", rho);
data.put(outputKey + "phi", phi);
data.put(outputKey + "eps", eps);
if (result_point[0] != Double.NaN) {
data.put(outputKey + "circle", new EllipseOverlay(x, y, r, r, phi));
data.put(outputKey + "circle_sigma1", new EllipseOverlay(x, y, r - sigma, r - sigma, phi));
data.put(outputKey + "circle_sigma2", new EllipseOverlay(x, y, r + sigma, r + sigma, phi));
} else {
data.put(outputKey + "circle", new EllipseOverlay(500, 0, 1, 1, 0));
data.put(outputKey + "circle_sigma1", new EllipseOverlay(500, 0, 1, 1, 0));
data.put(outputKey + "circle_sigma2", new EllipseOverlay(500, 0, 1, 1, 0));
}
return data;
}
示例9: doOptimize
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
/** {@inheritDoc} */
@Override
public PointValuePair doOptimize()
throws TooManyIterationsException,
UnboundedSolutionException,
NoFeasibleSolutionException {
// reset the tableau to indicate a non-feasible solution in case
// we do not pass phase 1 successfully
if (solutionCallback != null) {
solutionCallback.setTableau(null);
}
final SimplexTableau tableau =
new SimplexTableau(getFunction(),
getConstraints(),
getGoalType(),
isRestrictedToNonNegative(),
epsilon,
maxUlps);
solvePhase1(tableau);
tableau.dropPhase1Objective();
// after phase 1, we are sure to have a feasible solution
if (solutionCallback != null) {
solutionCallback.setTableau(tableau);
}
while (!tableau.isOptimal()) {
doIteration(tableau);
}
// check that the solution respects the nonNegative restriction in case
// the epsilon/cutOff values are too large for the actual linear problem
// (e.g. with very small constraint coefficients), the solver might actually
// find a non-valid solution (with negative coefficients).
final PointValuePair solution = tableau.getSolution();
if (isRestrictedToNonNegative()) {
final double[] coeff = solution.getPoint();
for (int i = 0; i < coeff.length; i++) {
if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
throw new NoFeasibleSolutionException();
}
}
}
return solution;
}
示例10: testTwoSets
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Test
public void testTwoSets() {
final double epsilon = 1.0e-7;
LinearProblem problem = new LinearProblem(new double[][] {
{ 2, 1, 0, 4, 0, 0 },
{ -4, -2, 3, -7, 0, 0 },
{ 4, 1, -2, 8, 0, 0 },
{ 0, -3, -12, -1, 0, 0 },
{ 0, 0, 0, 0, epsilon, 1 },
{ 0, 0, 0, 0, 1, 1 }
}, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2});
final Preconditioner preconditioner
= new Preconditioner() {
public double[] precondition(double[] point, double[] r) {
double[] d = r.clone();
d[0] /= 72.0;
d[1] /= 30.0;
d[2] /= 314.0;
d[3] /= 260.0;
d[4] /= 2 * (1 + epsilon * epsilon);
d[5] /= 4.0;
return d;
}
};
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13),
1e-7, 1e-7, 1,
preconditioner);
PointValuePair optimum
= optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));
final double[] result = optimum.getPoint();
final double[] expected = {3, 4, -1, -2, 1 + epsilon, 1 - epsilon};
Assert.assertEquals(expected[0], result[0], 1.0e-7);
Assert.assertEquals(expected[1], result[1], 1.0e-7);
Assert.assertEquals(expected[2], result[2], 1.0e-9);
Assert.assertEquals(expected[3], result[3], 1.0e-8);
Assert.assertEquals(expected[4] + epsilon, result[4], 1.0e-6);
Assert.assertEquals(expected[5] - epsilon, result[5], 1.0e-6);
}
示例11: testIllConditioned
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
@Test
public void testIllConditioned() {
LinearProblem problem1 = new LinearProblem(new double[][] {
{ 10.0, 7.0, 8.0, 7.0 },
{ 7.0, 5.0, 6.0, 5.0 },
{ 8.0, 6.0, 10.0, 9.0 },
{ 7.0, 5.0, 9.0, 10.0 }
}, new double[] { 32, 23, 33, 31 });
NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13),
1e-15, 1e-15, 1);
PointValuePair optimum1
= optimizer.optimize(new MaxEval(200),
problem1.getObjectiveFunction(),
problem1.getObjectiveFunctionGradient(),
GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 1, 2, 3 }));
Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4);
Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-3);
Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4);
Assert.assertEquals(1.0, optimum1.getPoint()[3], 1.0e-4);
LinearProblem problem2 = new LinearProblem(new double[][] {
{ 10.00, 7.00, 8.10, 7.20 },
{ 7.08, 5.04, 6.00, 5.00 },
{ 8.00, 5.98, 9.89, 9.00 },
{ 6.99, 4.99, 9.00, 9.98 }
}, new double[] { 32, 23, 33, 31 });
PointValuePair optimum2
= optimizer.optimize(new MaxEval(200),
problem2.getObjectiveFunction(),
problem2.getObjectiveFunctionGradient(),
GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 1, 2, 3 }));
final double[] result2 = optimum2.getPoint();
final double[] expected2 = {-81, 137, -34, 22};
Assert.assertEquals(expected2[0], result2[0], 2);
Assert.assertEquals(expected2[1], result2[1], 4);
Assert.assertEquals(expected2[2], result2[2], 1);
Assert.assertEquals(expected2[3], result2[3], 1);
}
示例12: testFitAccuracyDependsOnBoundary
import org.apache.commons.math3.optim.PointValuePair; //导入方法依赖的package包/类
/**
* Cf. MATH-867
*/
@Test
public void testFitAccuracyDependsOnBoundary() {
final CMAESOptimizer optimizer
= new CMAESOptimizer(30000, 0, true, 10,
0, new MersenneTwister(), false, null);
final MultivariateFunction fitnessFunction = new MultivariateFunction() {
public double value(double[] parameters) {
final double target = 11.1;
final double error = target - parameters[0];
return error * error;
}
};
final double[] start = { 1 };
// No bounds.
PointValuePair result = optimizer.optimize(new MaxEval(100000),
new ObjectiveFunction(fitnessFunction),
GoalType.MINIMIZE,
SimpleBounds.unbounded(1),
new CMAESOptimizer.PopulationSize(5),
new CMAESOptimizer.Sigma(new double[] { 1e-1 }),
new InitialGuess(start));
final double resNoBound = result.getPoint()[0];
// Optimum is near the lower bound.
final double[] lower = { -20 };
final double[] upper = { 5e16 };
final double[] sigma = { 10 };
result = optimizer.optimize(new MaxEval(100000),
new ObjectiveFunction(fitnessFunction),
GoalType.MINIMIZE,
new CMAESOptimizer.PopulationSize(5),
new CMAESOptimizer.Sigma(sigma),
new InitialGuess(start),
new SimpleBounds(lower, upper));
final double resNearLo = result.getPoint()[0];
// Optimum is near the upper bound.
lower[0] = -5e16;
upper[0] = 20;
result = optimizer.optimize(new MaxEval(100000),
new ObjectiveFunction(fitnessFunction),
GoalType.MINIMIZE,
new CMAESOptimizer.PopulationSize(5),
new CMAESOptimizer.Sigma(sigma),
new InitialGuess(start),
new SimpleBounds(lower, upper));
final double resNearHi = result.getPoint()[0];
// System.out.println("resNoBound=" + resNoBound +
// " resNearLo=" + resNearLo +
// " resNearHi=" + resNearHi);
// The two values currently differ by a substantial amount, indicating that
// the bounds definition can prevent reaching the optimum.
Assert.assertEquals(resNoBound, resNearLo, 1e-3);
Assert.assertEquals(resNoBound, resNearHi, 1e-3);
}