当前位置: 首页>>代码示例>>Java>>正文


Java PointValuePair类代码示例

本文整理汇总了Java中org.apache.commons.math3.optim.PointValuePair的典型用法代码示例。如果您正苦于以下问题:Java PointValuePair类的具体用法?Java PointValuePair怎么用?Java PointValuePair使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


PointValuePair类属于org.apache.commons.math3.optim包,在下文中一共展示了PointValuePair类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: applyToNetwork

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
@Override
public double applyToNetwork(final MixedClearingNetwork network) {
   Preconditions.checkNotNull(network);
   final int dimension = network.getNumberOfEdges();
   
   final ResidualCostFunction aggregateCostFunction =
      super.getResidualScalarCostFunction(network);
   final RealVector
      start = new ArrayRealVector(network.getNumberOfEdges());
   start.set(1.0);                                       // Initial rate guess.
   
   final BOBYQAOptimizer optimizer = new BOBYQAOptimizer(2*dimension + 1, 1.2, 1.e-8);
   final PointValuePair result = optimizer.optimize(
      new MaxEval(maximumEvaluations),
      new ObjectiveFunction(aggregateCostFunction),
      GoalType.MINIMIZE,
      new SimpleBounds(new double[dimension], ArrayUtil.ones(dimension)),
      new InitialGuess(start.toArray())
      );
   
   final double residualCost = result.getValue();
   System.out.println("Network cleared: residual cost: " + residualCost + ".");
   
   return residualCost;
}
 
开发者ID:crisis-economics,项目名称:CRISIS,代码行数:26,代码来源:BoundedQuadraticEstimationClearingAlgorithm.java

示例2: solve

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
public void solve(ActionEvent actionEvent) {
    disableControls();
    try{
        solver=new SimplexSolver(1e-6);
        LinearObjectiveFunction function=setObjective();
        Collection<LinearConstraint> constraints=setConstrains();
        PointValuePair result = solver.optimize(new MaxIter(1000000),function,new LinearConstraintSet(constraints), GoalType.MINIMIZE,new NonNegativeConstraint(true));
        retrieveResults(result);
    }catch(Exception e)
    {
        Alert alert=new Alert(Alert.AlertType.ERROR);
        alert.setHeaderText("Optimization failed due to error");
        alert.setContentText(e.getMessage());
        alert.showAndWait();
        e.printStackTrace();
    }
    enableControls();
}
 
开发者ID:superdurszlak,项目名称:Transport-Production-Issue,代码行数:19,代码来源:Controller.java

示例3: retrieveResults

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
private void retrieveResults(PointValuePair result) {
    int rows=suppliers.getValue();
    int cols=recipients.getValue();
    if (excessCheckbox.isSelected())
        cols++;
    double[] data=result.getPoint();
    for (int i = 0; i < rows; i++) {
        setVectorElement(excess,i,0);
    }
    for (int i = 0; i < data.length; i++) {
        int x=i%cols;
        int y=i/cols;
        if(x<recipients.getValue())
            setMatrixElement(this.result,y,x,data[i]);
        else
            setVectorElement(this.excess,y,data[i]);
    }
    double value=result.getValue();
    cost.setText(String.valueOf(value));
}
 
开发者ID:superdurszlak,项目名称:Transport-Production-Issue,代码行数:21,代码来源:Controller.java

示例4: findOptimum

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
@Override
public TreeMap<Double, TariffSpecification> findOptimum(TariffUtilityEstimate tariffUtilityEstimate,
    int NUM_RATES, int numEval) {
  
  double[] startingVertex = new double[NUM_RATES]; // start from the fixed-rate tariff's offset
  Arrays.fill(startingVertex, 0.0);
  
  PowellOptimizer optimizer = new PowellOptimizer(1e-3, 5);
  
  // needed since one optimization found positive 
  // charges (paying customer to consume...)
  double[][] boundaries = createBoundaries(NUM_RATES);
 
  final PointValuePair optimum
      = optimizer.optimize(
          new MaxEval(numEval),
          //new ObjectiveFunction(new MultivariateFunctionMappingAdapter(tariffUtilityEstimate, boundaries[0], boundaries[1])),
          new ObjectiveFunction(new OptimizerWrapperApacheObjective(tariffUtilityEstimate)),
          GoalType.MAXIMIZE,
          new InitialGuess(startingVertex)
          );
          
  TreeMap<Double, TariffSpecification> eval2TOUTariff = new TreeMap<Double, TariffSpecification>();
  eval2TOUTariff.put(optimum.getValue(), tariffUtilityEstimate.getCorrespondingSpec(optimum.getKey()));
  return eval2TOUTariff;
}
 
开发者ID:LARG,项目名称:TacTex,代码行数:27,代码来源:OptimizerWrapperApachePowell.java

示例5: solve

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
@Override
public void solve(double[] dir)
{
    /* Check the dimension of the vectorspace where lives dir */
    if (dir.length != d)
        throw new LinearProgrammingSolverException(dddirMessage);
    /* Update the constraints set of the simplex solver if modification */
    if (lcListModified)
    {
        List <LinearConstraint> lcList = new ArrayList <LinearConstraint>();
        int n = dirList.size();
        for (int i = 0 ; i < n ; i++) lcList.add(new LinearConstraint(dirList.get(i), Relationship.LEQ, valList.get(i)));
        lcSet = new LinearConstraintSet(lcList);
    }
    /* Evaluation */
    PointValuePair res = solver.optimize(new LinearObjectiveFunction(dir, 0), lcSet, GoalType.MAXIMIZE);
    /* Update the results and the flags */
    point = res.getPoint ();
    value = res.getSecond ();
    evaluated = true;
    lcListModified = false;
}
 
开发者ID:viryfrederic,项目名称:3plib,代码行数:23,代码来源:ACMLinearProgrammingSolver.java

示例6: iteration

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
private PointValuePair iteration(final PointValuePair init) {
	PointValuePair result = init;
	if (bounds != null) {
		result = select("CM", cmaes(init.getFirst(), 10), result);
	}
	result = select("NM", nelderMead(init.getFirst()), result);
	if (ADDITIONAL_OPTIMIZERS) {
		result = select("MD", multiDirection(init.getFirst()), result);
		result = select("PO", powell(init.getFirst()), result);
		try {
			result = select("BO", bobyqa(init.getFirst()), result);
		} catch (final Exception e) {
			logger.error("{}", e);
		}
	}
	return result;
}
 
开发者ID:ProfilingIO,项目名称:insight-ml,代码行数:18,代码来源:AbstractOptimizable.java

示例7: NonLinearConjugateGradientOptimizer

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * @param updateFormula formula to use for updating the &beta; parameter,
 * must be one of {@link Formula#FLETCHER_REEVES} or
 * {@link Formula#POLAK_RIBIERE}.
 * @param checker Convergence checker.
 * @param preconditioner Preconditioner.
 * @param relativeTolerance Relative threshold for line search.
 * @param absoluteTolerance Absolute threshold for line search.
 * @param initialBracketingRange Extent of the initial interval used to
 * find an interval that brackets the optimum in order to perform the
 * line search.
 *
 * @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
 * @since 3.3
 */
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
                                           ConvergenceChecker<PointValuePair> checker,
                                           double relativeTolerance,
                                           double absoluteTolerance,
                                           double initialBracketingRange,
                                           final Preconditioner preconditioner) {
    super(checker);

    this.updateFormula = updateFormula;
    this.preconditioner = preconditioner;
    line = new LineSearch(this,
                          relativeTolerance,
                          absoluteTolerance,
                          initialBracketingRange);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:31,代码来源:NonLinearConjugateGradientOptimizer.java

示例8: getPairComparator

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * @return a comparator for sorting the optima.
 */
private Comparator<PointValuePair> getPairComparator() {
    return new Comparator<PointValuePair>() {
        /** {@inheritDoc} */
        public int compare(final PointValuePair o1,
                           final PointValuePair o2) {
            if (o1 == null) {
                return (o2 == null) ? 0 : 1;
            } else if (o2 == null) {
                return -1;
            }
            final double v1 = o1.getValue();
            final double v2 = o2.getValue();
            return (optimizer.getGoalType() == GoalType.MINIMIZE) ?
                Double.compare(v1, v2) : Double.compare(v2, v1);
        }
    };
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:21,代码来源:MultiStartMultivariateOptimizer.java

示例9: doOptimize

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
    final double[] lowerBound = getLowerBound();
    final double[] upperBound = getUpperBound();

    // Validity checks.
    setup(lowerBound, upperBound);

    isMinimize = (getGoalType() == GoalType.MINIMIZE);
    currentBest = new ArrayRealVector(getStartPoint());

    final double value = bobyqa(lowerBound, upperBound);

    return new PointValuePair(currentBest.getDataRef(),
                              isMinimize ? value : -value);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:18,代码来源:BOBYQAOptimizer.java

示例10: build

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * Build an initial simplex.
 *
 * @param startPoint First point of the simplex.
 * @throws DimensionMismatchException if the start point does not match
 * simplex dimension.
 */
public void build(final double[] startPoint) {
    if (dimension != startPoint.length) {
        throw new DimensionMismatchException(dimension, startPoint.length);
    }

    // Set first vertex.
    simplex = new PointValuePair[dimension + 1];
    simplex[0] = new PointValuePair(startPoint, Double.NaN);

    // Set remaining vertices.
    for (int i = 0; i < dimension; i++) {
        final double[] confI = startConfiguration[i];
        final double[] vertexI = new double[dimension];
        for (int k = 0; k < dimension; k++) {
            vertexI[k] = startPoint[k] + confI[k];
        }
        simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
    }
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:27,代码来源:AbstractSimplex.java

示例11: evaluateNewSimplex

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * Compute and evaluate a new simplex.
 *
 * @param evaluationFunction Evaluation function.
 * @param original Original simplex (to be preserved).
 * @param coeff Linear coefficient.
 * @param comparator Comparator to use to sort simplex vertices from best
 * to poorest.
 * @return the best point in the transformed simplex.
 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
 * if the maximal number of evaluations is exceeded.
 */
private PointValuePair evaluateNewSimplex(final MultivariateFunction evaluationFunction,
                                              final PointValuePair[] original,
                                              final double coeff,
                                              final Comparator<PointValuePair> comparator) {
    final double[] xSmallest = original[0].getPointRef();
    // Perform a linear transformation on all the simplex points,
    // except the first one.
    setPoint(0, original[0]);
    final int dim = getDimension();
    for (int i = 1; i < getSize(); i++) {
        final double[] xOriginal = original[i].getPointRef();
        final double[] xTransformed = new double[dim];
        for (int j = 0; j < dim; j++) {
            xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
        }
        setPoint(i, new PointValuePair(xTransformed, Double.NaN, false));
    }

    // Evaluate the simplex.
    evaluate(evaluationFunction, comparator);

    return getPoint(0);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:36,代码来源:MultiDirectionalSimplex.java

示例12: PowellOptimizer

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * This constructor allows to specify a user-defined convergence checker,
 * in addition to the parameters that control the default convergence
 * checking procedure and the line search tolerances.
 *
 * @param rel Relative threshold for this optimizer.
 * @param abs Absolute threshold for this optimizer.
 * @param lineRel Relative threshold for the internal line search optimizer.
 * @param lineAbs Absolute threshold for the internal line search optimizer.
 * @param checker Convergence checker.
 * @throws NotStrictlyPositiveException if {@code abs <= 0}.
 * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
 */
public PowellOptimizer(double rel,
                       double abs,
                       double lineRel,
                       double lineAbs,
                       ConvergenceChecker<PointValuePair> checker) {
    super(checker);

    if (rel < MIN_RELATIVE_TOLERANCE) {
        throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true);
    }
    if (abs <= 0) {
        throw new NotStrictlyPositiveException(abs);
    }
    relativeThreshold = rel;
    absoluteThreshold = abs;

    // Create the line search optimizer.
    line = new LineSearch(this,
                          lineRel,
                          lineAbs,
                          1d);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:36,代码来源:PowellOptimizer.java

示例13: CMAESOptimizer

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * @param maxIterations Maximal number of iterations.
 * @param stopFitness Whether to stop if objective function value is smaller than
 * {@code stopFitness}.
 * @param isActiveCMA Chooses the covariance matrix update method.
 * @param diagonalOnly Number of initial iterations, where the covariance matrix
 * remains diagonal.
 * @param checkFeasableCount Determines how often new random objective variables are
 * generated in case they are out of bounds.
 * @param random Random generator.
 * @param generateStatistics Whether statistic data is collected.
 * @param checker Convergence checker.
 *
 * @since 3.1
 */
public CMAESOptimizer(int maxIterations,
                      double stopFitness,
                      boolean isActiveCMA,
                      int diagonalOnly,
                      int checkFeasableCount,
                      RandomGenerator random,
                      boolean generateStatistics,
                      ConvergenceChecker<PointValuePair> checker) {
    super(checker);
    this.maxIterations = maxIterations;
    this.stopFitness = stopFitness;
    this.isActiveCMA = isActiveCMA;
    this.diagonalOnly = diagonalOnly;
    this.checkFeasableCount = checkFeasableCount;
    this.random = random;
    this.generateStatistics = generateStatistics;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:33,代码来源:CMAESOptimizer.java

示例14: optimize

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
/**
 * Optimizes parameters using the Nelder-Mead Method
 * @param initialGuess initial guess / state required for Nelder-Mead-Method
 * @param costFunction which defines that the Mean Squared Error has to be minimized
 * @return the optimized values
 */
private static double[] optimize(double[] initialGuess, MultivariateFunctionMappingAdapter costFunction) {
    double[] result;

    SimplexOptimizer optimizer = new SimplexOptimizer(simplexRelativeThreshold, simplexAbsoluteThreshold);

    PointValuePair unBoundedResult = optimizer.optimize(
            GoalType.MINIMIZE,
            new MaxIter(MAX_ALLOWED_NUMBER_OF_ITERATION),
            new MaxEval(MAX_ALLOWED_NUMBER_OF_EVALUATION),
            new InitialGuess(initialGuess),
            new ObjectiveFunction(costFunction),
            new NelderMeadSimplex(initialGuess.length));

    result = costFunction.unboundedToBounded(unBoundedResult.getPoint());
    return result;
}
 
开发者ID:lidox,项目名称:reaction-test,代码行数:23,代码来源:NelderMeadOptimizer.java

示例15: testMath828Cycle

import org.apache.commons.math3.optim.PointValuePair; //导入依赖的package包/类
@Test
public void testMath828Cycle() {
    LinearObjectiveFunction f = new LinearObjectiveFunction(
            new double[] { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, 0.0);
    
    ArrayList <LinearConstraint>constraints = new ArrayList<LinearConstraint>();

    constraints.add(new LinearConstraint(new double[] {0.0, 16.0, 14.0, 69.0, 1.0, 85.0, 52.0, 43.0, 64.0, 97.0, 14.0, 74.0, 89.0, 28.0, 94.0, 58.0, 13.0, 22.0, 21.0, 17.0, 30.0, 25.0, 1.0, 59.0, 91.0, 78.0, 12.0, 74.0, 56.0, 3.0, 88.0,}, Relationship.GEQ, 91.0));
    constraints.add(new LinearConstraint(new double[] {0.0, 60.0, 40.0, 81.0, 71.0, 72.0, 46.0, 45.0, 38.0, 48.0, 40.0, 17.0, 33.0, 85.0, 64.0, 32.0, 84.0, 3.0, 54.0, 44.0, 71.0, 67.0, 90.0, 95.0, 54.0, 99.0, 99.0, 29.0, 52.0, 98.0, 9.0,}, Relationship.GEQ, 54.0));
    constraints.add(new LinearConstraint(new double[] {0.0, 41.0, 12.0, 86.0, 90.0, 61.0, 31.0, 41.0, 23.0, 89.0, 17.0, 74.0, 44.0, 27.0, 16.0, 47.0, 80.0, 32.0, 11.0, 56.0, 68.0, 82.0, 11.0, 62.0, 62.0, 53.0, 39.0, 16.0, 48.0, 1.0, 63.0,}, Relationship.GEQ, 62.0));
    constraints.add(new LinearConstraint(new double[] {83.0, -76.0, -94.0, -19.0, -15.0, -70.0, -72.0, -57.0, -63.0, -65.0, -22.0, -94.0, -22.0, -88.0, -86.0, -89.0, -72.0, -16.0, -80.0, -49.0, -70.0, -93.0, -95.0, -17.0, -83.0, -97.0, -31.0, -47.0, -31.0, -13.0, -23.0,}, Relationship.GEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] {41.0, -96.0, -41.0, -48.0, -70.0, -43.0, -43.0, -43.0, -97.0, -37.0, -85.0, -70.0, -45.0, -67.0, -87.0, -69.0, -94.0, -54.0, -54.0, -92.0, -79.0, -10.0, -35.0, -20.0, -41.0, -41.0, -65.0, -25.0, -12.0, -8.0, -46.0,}, Relationship.GEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] {27.0, -42.0, -65.0, -49.0, -53.0, -42.0, -17.0, -2.0, -61.0, -31.0, -76.0, -47.0, -8.0, -93.0, -86.0, -62.0, -65.0, -63.0, -22.0, -43.0, -27.0, -23.0, -32.0, -74.0, -27.0, -63.0, -47.0, -78.0, -29.0, -95.0, -73.0,}, Relationship.GEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] {15.0, -46.0, -41.0, -83.0, -98.0, -99.0, -21.0, -35.0, -7.0, -14.0, -80.0, -63.0, -18.0, -42.0, -5.0, -34.0, -56.0, -70.0, -16.0, -18.0, -74.0, -61.0, -47.0, -41.0, -15.0, -79.0, -18.0, -47.0, -88.0, -68.0, -55.0,}, Relationship.GEQ, 0.0));
    
    double epsilon = 1e-6;
    PointValuePair solution = new SimplexSolver().optimize(DEFAULT_MAX_ITER, f,
                                                           new LinearConstraintSet(constraints),
                                                           GoalType.MINIMIZE, new NonNegativeConstraint(true),
                                                           PivotSelectionRule.BLAND);
    Assert.assertEquals(1.0d, solution.getValue(), epsilon);
    Assert.assertTrue(validSolution(solution, constraints, epsilon));        
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:SimplexSolverTest.java


注:本文中的org.apache.commons.math3.optim.PointValuePair类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。