本文整理汇总了Java中org.apache.commons.math3.distribution.IntegerDistribution.sample方法的典型用法代码示例。如果您正苦于以下问题:Java IntegerDistribution.sample方法的具体用法?Java IntegerDistribution.sample怎么用?Java IntegerDistribution.sample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.distribution.IntegerDistribution
的用法示例。
在下文中一共展示了IntegerDistribution.sample方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testWithInitialCapacity
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Test
public void testWithInitialCapacity() {
ResizableDoubleArray eDA2 = new ResizableDoubleArray(2);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA2.getNumElements());
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 1000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA2.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations, eDA2.getNumElements());
eDA2.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations + 1 , eDA2.getNumElements() );
}
示例2: getBinomial
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getBinomial(
final RandomNumberStream rng, final Number trials, final Number p)
{
final IntegerDistribution dist = new BinomialDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
trials.intValue(), p.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例3: getGeometric
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getGeometric(
final RandomNumberStream rng, final Number p)
{
final IntegerDistribution dist = new GeometricDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
p.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例4: getHypergeometric
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getHypergeometric(
final RandomNumberStream rng, final Number populationSize,
final Number numberOfSuccesses, final Number sampleSize)
{
final IntegerDistribution dist = new HypergeometricDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
populationSize.intValue(), numberOfSuccesses.intValue(),
sampleSize.intValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例5: getPoisson
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getPoisson(
final RandomNumberStream rng, final Number alpha, final Number beta)
{
final IntegerDistribution dist = new BinomialDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
alpha.intValue(), beta.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例6: getUniformInteger
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getUniformInteger(
final RandomNumberStream rng, final Number lower, final Number upper)
{
final IntegerDistribution dist = new UniformIntegerDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
lower.intValue(), upper.intValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例7: getZipf
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getZipf(
final RandomNumberStream rng, final Number numberOfElements,
final Number exponent)
{
final IntegerDistribution dist = new ZipfDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
numberOfElements.intValue(), exponent.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例8: generate
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
static BenchmarkData generate(int param, int howMany, int smallType, int bigType) {
IntegerDistribution ud = new UniformIntegerDistribution(new Well19937c(param + 17),
Short.MIN_VALUE, Short.MAX_VALUE);
ClusteredDataGenerator cd = new ClusteredDataGenerator();
IntegerDistribution p = new UniformIntegerDistribution(new Well19937c(param + 123),
SMALLEST_ARRAY, BIGGEST_ARRAY / param);
BenchmarkContainer[] smalls = new BenchmarkContainer[howMany];
BenchmarkContainer[] bigs = new BenchmarkContainer[howMany];
for (int i = 0; i < howMany; i++) {
int smallSize = p.sample();
int bigSize = smallSize * param;
short[] small =
smallType == 0 ? generateUniform(ud, smallSize) : generateClustered(cd, smallSize);
short[] big = bigType == 0 ? generateUniform(ud, bigSize) : generateClustered(cd, bigSize);
smalls[i] = new BenchmarkContainer(small);
bigs[i] = new BenchmarkContainer(big);
}
return new BenchmarkData(smalls, bigs);
}
示例9: generateSample
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
/**
* Generates a random sample of double values.
* Sample size is random, between 10 and 100 and values are
* uniformly distributed over [-100, 100].
*
* @return array of random double values
*/
private double[] generateSample() {
final IntegerDistribution size = new UniformIntegerDistribution(10, 100);
final RealDistribution randomData = new UniformRealDistribution(-100, 100);
final int sampleSize = size.sample();
final double[] out = randomData.sample(sampleSize);
return out;
}
示例10: testWeightedConsistency
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
/**
* Tests consistency of weighted statistic computation.
* For statistics that support weighted evaluation, this test case compares
* the result of direct computation on an array with repeated values with
* a weighted computation on the corresponding (shorter) array with each
* value appearing only once but with a weight value equal to its multiplicity
* in the repeating array.
*/
@Test
public void testWeightedConsistency() {
// See if this statistic computes weighted statistics
// If not, skip this test
UnivariateStatistic statistic = getUnivariateStatistic();
if (!(statistic instanceof WeightedEvaluation)) {
return;
}
// Create arrays of values and corresponding integral weights
// and longer array with values repeated according to the weights
final int len = 10; // length of values array
final double mu = 0; // mean of test data
final double sigma = 5; // std dev of test data
double[] values = new double[len];
double[] weights = new double[len];
// Fill weights array with random int values between 1 and 5
int[] intWeights = new int[len];
final IntegerDistribution weightDist = new UniformIntegerDistribution(1, 5);
for (int i = 0; i < len; i++) {
intWeights[i] = weightDist.sample();
weights[i] = intWeights[i];
}
// Fill values array with random data from N(mu, sigma)
// and fill valuesList with values from values array with
// values[i] repeated weights[i] times, each i
final RealDistribution valueDist = new NormalDistribution(mu, sigma);
List<Double> valuesList = new ArrayList<Double>();
for (int i = 0; i < len; i++) {
double value = valueDist.sample();
values[i] = value;
for (int j = 0; j < intWeights[i]; j++) {
valuesList.add(new Double(value));
}
}
// Dump valuesList into repeatedValues array
int sumWeights = valuesList.size();
double[] repeatedValues = new double[sumWeights];
for (int i = 0; i < sumWeights; i++) {
repeatedValues[i] = valuesList.get(i);
}
// Compare result of weighted statistic computation with direct computation
// on array of repeated values
WeightedEvaluation weightedStatistic = (WeightedEvaluation) statistic;
TestUtils.assertRelativelyEquals(statistic.evaluate(repeatedValues),
weightedStatistic.evaluate(values, weights, 0, values.length),
10E-12);
// Check consistency of weighted evaluation methods
Assert.assertEquals(weightedStatistic.evaluate(values, weights, 0, values.length),
weightedStatistic.evaluate(values, weights), Double.MIN_VALUE);
}
示例11: testWithInitialCapacityAndExpansionFactor
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Test
public void testWithInitialCapacityAndExpansionFactor() {
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0, 3.5);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() );
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 3000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA3.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations,eDA3.getNumElements());
eDA3.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations +1, eDA3.getNumElements() );
Assert.assertEquals("Expansion factor should equal 3.0", 3.0f, eDA3.getExpansionFactor(), Double.MIN_VALUE);
}
示例12: flipOneNonUniform
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
/**
* y0: w=(0,1)
* y1: w=(1,1)
* y2: w=(1,0)
* y3: w=(1,-1)
* @param numData
* @return
*/
public static MultiLabelClfDataSet flipOneNonUniform(int numData){
int numClass = 4;
int numFeature = 2;
MultiLabelClfDataSet dataSet = MLClfDataSetBuilder.getBuilder().numFeatures(numFeature)
.numClasses(numClass)
.numDataPoints(numData)
.build();
// generate weights
Vector[] weights = new Vector[numClass];
for (int k=0;k<numClass;k++){
Vector vector = new DenseVector(numFeature);
weights[k] = vector;
}
weights[0].set(0,0);
weights[0].set(1,1);
weights[1].set(0, 1);
weights[1].set(1, 1);
weights[2].set(0, 1);
weights[2].set(1, 0);
weights[3].set(0,1);
weights[3].set(1,-1);
// generate features
for (int i=0;i<numData;i++){
for (int j=0;j<numFeature;j++){
dataSet.setFeatureValue(i,j,Sampling.doubleUniform(-1, 1));
}
}
// assign labels
for (int i=0;i<numData;i++){
for (int k=0;k<numClass;k++){
double dot = weights[k].dot(dataSet.getRow(i));
if (dot>=0){
dataSet.addLabel(i,k);
}
}
}
int[] indices = {0,1,2,3};
double[] probs = {0.4,0.2,0.2,0.2};
IntegerDistribution distribution = new EnumeratedIntegerDistribution(indices,probs);
// flip
for (int i=0;i<numData;i++){
int toChange = distribution.sample();
MultiLabel label = dataSet.getMultiLabels()[i];
if (label.matchClass(toChange)){
label.removeLabel(toChange);
} else {
label.addLabel(toChange);
}
}
return dataSet;
}
示例13: sampleFromMix
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
/**
* C0, y0: w=(0,1)
* C0, y1: w=(1,1)
* C1, y0: w=(1,0)
* C1, y1: w=(1,-1)
* @return
*/
public static MultiLabelClfDataSet sampleFromMix(){
int numData = 10000;
int numClass = 2;
int numFeature = 2;
int numClusters = 2;
double[] proportions = {0.4,0.6};
int[] indices = {0,1};
MultiLabelClfDataSet dataSet = MLClfDataSetBuilder.getBuilder()
.numFeatures(numFeature)
.numClasses(numClass)
.numDataPoints(numData)
.build();
// generate weights
Vector[][] weights = new Vector[numClusters][numClass];
for (int c=0;c<numClusters;c++){
for (int l=0;l<numClass;l++){
Vector vector = new DenseVector(numFeature);
weights[c][l] = vector;
}
}
weights[0][0].set(0, 0);
weights[0][0].set(1, 1);
weights[0][1].set(0, 1);
weights[0][1].set(1, 1);
weights[1][0].set(0, 1);
weights[1][0].set(1, 0);
weights[1][1].set(0, 1);
weights[1][1].set(1,-1);
// generate features
for (int i=0;i<numData;i++){
for (int j=0;j<numFeature;j++){
dataSet.setFeatureValue(i,j,Sampling.doubleUniform(-1, 1));
}
}
IntegerDistribution distribution = new EnumeratedIntegerDistribution(indices,proportions);
// assign labels
for (int i=0;i<numData;i++){
int cluster = distribution.sample();
System.out.println("cluster "+cluster);
for (int l=0;l<numClass;l++){
System.out.println("row = "+dataSet.getRow(i));
System.out.println("weight = "+ weights[cluster][l]);
double dot = weights[cluster][l].dot(dataSet.getRow(i));
System.out.println("dot = "+dot);
if (dot>=0){
dataSet.addLabel(i,l);
}
}
}
return dataSet;
}
示例14: testWithInitialCapacityAndExpansionFactor
import org.apache.commons.math3.distribution.IntegerDistribution; //导入方法依赖的package包/类
@Test
public void testWithInitialCapacityAndExpansionFactor() {
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0f, 3.5f);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() );
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 3000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA3.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations,eDA3.getNumElements());
eDA3.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations +1, eDA3.getNumElements() );
Assert.assertEquals("Expansion factor should equal 3.0", 3.0f, eDA3.getExpansionFactor(), Double.MIN_VALUE);
}