本文整理汇总了Java中org.apache.commons.math3.distribution.IntegerDistribution类的典型用法代码示例。如果您正苦于以下问题:Java IntegerDistribution类的具体用法?Java IntegerDistribution怎么用?Java IntegerDistribution使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
IntegerDistribution类属于org.apache.commons.math3.distribution包,在下文中一共展示了IntegerDistribution类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testWithInitialCapacity
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Test
public void testWithInitialCapacity() {
ResizableDoubleArray eDA2 = new ResizableDoubleArray(2);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA2.getNumElements());
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 1000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA2.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations, eDA2.getNumElements());
eDA2.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations + 1 , eDA2.getNumElements() );
}
示例2: getBinomial
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getBinomial(
final RandomNumberStream rng, final Number trials, final Number p)
{
final IntegerDistribution dist = new BinomialDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
trials.intValue(), p.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例3: getGeometric
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getGeometric(
final RandomNumberStream rng, final Number p)
{
final IntegerDistribution dist = new GeometricDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
p.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例4: getHypergeometric
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getHypergeometric(
final RandomNumberStream rng, final Number populationSize,
final Number numberOfSuccesses, final Number sampleSize)
{
final IntegerDistribution dist = new HypergeometricDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
populationSize.intValue(), numberOfSuccesses.intValue(),
sampleSize.intValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例5: getPascal
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getPascal(
final RandomNumberStream rng, final Number r, final Number p)
{
final IntegerDistribution dist = new PascalDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
r.intValue(), p.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例6: getPoisson
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getPoisson(
final RandomNumberStream rng, final Number alpha, final Number beta)
{
final IntegerDistribution dist = new BinomialDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
alpha.intValue(), beta.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例7: getUniformInteger
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getUniformInteger(
final RandomNumberStream rng, final Number lower, final Number upper)
{
final IntegerDistribution dist = new UniformIntegerDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
lower.intValue(), upper.intValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例8: getZipf
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Integer> getZipf(
final RandomNumberStream rng, final Number numberOfElements,
final Number exponent)
{
final IntegerDistribution dist = new ZipfDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
numberOfElements.intValue(), exponent.doubleValue());
return new RandomNumberDistribution<Integer>()
{
@Override
public Integer draw()
{
return dist.sample();
}
};
}
示例9: generate
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
static BenchmarkData generate(int param, int howMany, int smallType, int bigType) {
IntegerDistribution ud = new UniformIntegerDistribution(new Well19937c(param + 17),
Short.MIN_VALUE, Short.MAX_VALUE);
ClusteredDataGenerator cd = new ClusteredDataGenerator();
IntegerDistribution p = new UniformIntegerDistribution(new Well19937c(param + 123),
SMALLEST_ARRAY, BIGGEST_ARRAY / param);
BenchmarkContainer[] smalls = new BenchmarkContainer[howMany];
BenchmarkContainer[] bigs = new BenchmarkContainer[howMany];
for (int i = 0; i < howMany; i++) {
int smallSize = p.sample();
int bigSize = smallSize * param;
short[] small =
smallType == 0 ? generateUniform(ud, smallSize) : generateClustered(cd, smallSize);
short[] big = bigType == 0 ? generateUniform(ud, bigSize) : generateClustered(cd, bigSize);
smalls[i] = new BenchmarkContainer(small);
bigs[i] = new BenchmarkContainer(big);
}
return new BenchmarkData(smalls, bigs);
}
示例10: checkDiscreteProbability
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
/**
* Asserts that the probability of sampling a value as or more extreme than the given value,
* from the given discrete distribution, is at least 0.001.
*
* @param value sample value
* @param dist discrete distribution
*/
public static void checkDiscreteProbability(int value, IntegerDistribution dist) {
double probAsExtreme = value <= dist.getNumericalMean() ?
dist.cumulativeProbability(value) :
(1.0 - dist.cumulativeProbability(value - 1));
assertTrue(value + " is not likely (" + probAsExtreme + " ) to differ from expected value " +
dist.getNumericalMean() + " by chance",
probAsExtreme >= 0.001);
}
示例11: generateSample
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
/**
* Generates a random sample of double values.
* Sample size is random, between 10 and 100 and values are
* uniformly distributed over [-100, 100].
*
* @return array of random double values
*/
private double[] generateSample() {
final IntegerDistribution size = new UniformIntegerDistribution(10, 100);
final RealDistribution randomData = new UniformRealDistribution(-100, 100);
final int sampleSize = size.sample();
final double[] out = randomData.sample(sampleSize);
return out;
}
示例12: testMLUpdate
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Test
public void testMLUpdate() throws Exception {
Path tempDir = getTempDir();
Path dataDir = tempDir.resolve("data");
Map<String,Object> overlayConfig = new HashMap<>();
overlayConfig.put("oryx.batch.update-class", MockMLUpdate.class.getName());
ConfigUtils.set(overlayConfig, "oryx.batch.storage.data-dir", dataDir);
ConfigUtils.set(overlayConfig, "oryx.batch.storage.model-dir", tempDir.resolve("model"));
overlayConfig.put("oryx.batch.streaming.generation-interval-sec", GEN_INTERVAL_SEC);
overlayConfig.put("oryx.ml.eval.test-fraction", TEST_FRACTION);
overlayConfig.put("oryx.ml.eval.threshold", DATA_TO_WRITE / 2); // Should easily pass threshold
Config config = ConfigUtils.overlayOn(overlayConfig, getConfig());
startMessaging();
List<Integer> trainCounts = MockMLUpdate.getResetTrainCounts();
List<Integer> testCounts = MockMLUpdate.getResetTestCounts();
startServerProduceConsumeTopics(config, DATA_TO_WRITE, WRITE_INTERVAL_MSEC);
// If lists are unequal at this point, there must have been an empty test set
// which yielded no call to evaluate(). Fill in the blank
while (trainCounts.size() > testCounts.size()) {
testCounts.add(0);
}
log.info("trainCounts = {}", trainCounts);
log.info("testCounts = {}", testCounts);
checkOutputData(dataDir, DATA_TO_WRITE);
checkIntervals(trainCounts.size(), DATA_TO_WRITE, WRITE_INTERVAL_MSEC, GEN_INTERVAL_SEC);
assertEquals(testCounts.size(), trainCounts.size());
RandomGenerator random = RandomManager.getRandom();
int lastTotalTrainCount = 0;
int lastTestCount = 0;
for (int i = 0; i < testCounts.size(); i++) {
int totalTrainCount = trainCounts.get(i);
int testCount = testCounts.get(i);
int newTrainInGen = totalTrainCount - (lastTotalTrainCount + lastTestCount);
if (newTrainInGen == 0) {
continue;
}
lastTotalTrainCount = totalTrainCount;
lastTestCount = testCount;
int totalNew = testCount + newTrainInGen;
IntegerDistribution dist = new BinomialDistribution(random, totalNew, TEST_FRACTION);
checkDiscreteProbability(testCount, dist);
}
}
示例13: testWeightedConsistency
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
/**
* Tests consistency of weighted statistic computation.
* For statistics that support weighted evaluation, this test case compares
* the result of direct computation on an array with repeated values with
* a weighted computation on the corresponding (shorter) array with each
* value appearing only once but with a weight value equal to its multiplicity
* in the repeating array.
*/
@Test
public void testWeightedConsistency() {
// See if this statistic computes weighted statistics
// If not, skip this test
UnivariateStatistic statistic = getUnivariateStatistic();
if (!(statistic instanceof WeightedEvaluation)) {
return;
}
// Create arrays of values and corresponding integral weights
// and longer array with values repeated according to the weights
final int len = 10; // length of values array
final double mu = 0; // mean of test data
final double sigma = 5; // std dev of test data
double[] values = new double[len];
double[] weights = new double[len];
// Fill weights array with random int values between 1 and 5
int[] intWeights = new int[len];
final IntegerDistribution weightDist = new UniformIntegerDistribution(1, 5);
for (int i = 0; i < len; i++) {
intWeights[i] = weightDist.sample();
weights[i] = intWeights[i];
}
// Fill values array with random data from N(mu, sigma)
// and fill valuesList with values from values array with
// values[i] repeated weights[i] times, each i
final RealDistribution valueDist = new NormalDistribution(mu, sigma);
List<Double> valuesList = new ArrayList<Double>();
for (int i = 0; i < len; i++) {
double value = valueDist.sample();
values[i] = value;
for (int j = 0; j < intWeights[i]; j++) {
valuesList.add(new Double(value));
}
}
// Dump valuesList into repeatedValues array
int sumWeights = valuesList.size();
double[] repeatedValues = new double[sumWeights];
for (int i = 0; i < sumWeights; i++) {
repeatedValues[i] = valuesList.get(i);
}
// Compare result of weighted statistic computation with direct computation
// on array of repeated values
WeightedEvaluation weightedStatistic = (WeightedEvaluation) statistic;
TestUtils.assertRelativelyEquals(statistic.evaluate(repeatedValues),
weightedStatistic.evaluate(values, weights, 0, values.length),
10E-12);
// Check consistency of weighted evaluation methods
Assert.assertEquals(weightedStatistic.evaluate(values, weights, 0, values.length),
weightedStatistic.evaluate(values, weights), Double.MIN_VALUE);
}
示例14: testWithInitialCapacityAndExpansionFactor
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Test
public void testWithInitialCapacityAndExpansionFactor() {
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0, 3.5);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() );
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 3000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA3.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations,eDA3.getNumElements());
eDA3.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations +1, eDA3.getNumElements() );
Assert.assertEquals("Expansion factor should equal 3.0", 3.0f, eDA3.getExpansionFactor(), Double.MIN_VALUE);
}
示例15: testWithInitialCapacityAndExpansionFactor
import org.apache.commons.math3.distribution.IntegerDistribution; //导入依赖的package包/类
@Test
public void testWithInitialCapacityAndExpansionFactor() {
ResizableDoubleArray eDA3 = new ResizableDoubleArray(3, 3.0f, 3.5f);
Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() );
final IntegerDistribution randomData = new UniformIntegerDistribution(100, 3000);
final int iterations = randomData.sample();
for( int i = 0; i < iterations; i++) {
eDA3.addElement( i );
}
Assert.assertEquals("Number of elements should be equal to " + iterations, iterations,eDA3.getNumElements());
eDA3.addElement( 2.0 );
Assert.assertEquals("Number of elements should be equals to " + (iterations +1),
iterations +1, eDA3.getNumElements() );
Assert.assertEquals("Expansion factor should equal 3.0", 3.0f, eDA3.getExpansionFactor(), Double.MIN_VALUE);
}