当前位置: 首页>>代码示例>>Java>>正文


Java DescriptiveStatistics.getStandardDeviation方法代码示例

本文整理汇总了Java中org.apache.commons.math.stat.descriptive.DescriptiveStatistics.getStandardDeviation方法的典型用法代码示例。如果您正苦于以下问题:Java DescriptiveStatistics.getStandardDeviation方法的具体用法?Java DescriptiveStatistics.getStandardDeviation怎么用?Java DescriptiveStatistics.getStandardDeviation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math.stat.descriptive.DescriptiveStatistics的用法示例。


在下文中一共展示了DescriptiveStatistics.getStandardDeviation方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: scale

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
private void scale(double[][] peakList) {
    DescriptiveStatistics stdDevStats = new DescriptiveStatistics();

    for (int columns = 0; columns < peakList.length; columns++) {
        stdDevStats.clear();
        for (int row = 0; row < peakList[columns].length; row++) {
            if (!Double.isInfinite(peakList[columns][row])
                    && !Double.isNaN(peakList[columns][row])) {
                stdDevStats.addValue(peakList[columns][row]);
            }
        }

        double stdDev = stdDevStats.getStandardDeviation();

        for (int row = 0; row < peakList[columns].length; row++) {
            if (stdDev != 0) {
                peakList[columns][row] = peakList[columns][row] / stdDev;
            }
        }
    }
}
 
开发者ID:mzmine,项目名称:mzmine2,代码行数:22,代码来源:HeatMapTask.java

示例2: computeStatistics

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Compute the current aggregate statistics of the
 * accumulated results. 
 * 
 * @return the current aggregate statistics
 */
public AggregateStatistics computeStatistics() {
	DescriptiveStatistics accuracy = new DescriptiveStatistics();
	DescriptiveStatistics errorRate = new DescriptiveStatistics();
	
	for (CMResult<CLASS> result : matrices) {
		ConfusionMatrix<CLASS> m = result.getMatrix();
		accuracy.addValue(m.getAccuracy());
		errorRate.addValue(m.getErrorRate());
	}
	
	AggregateStatistics s = new AggregateStatistics();
	s.meanAccuracy = accuracy.getMean();
	s.stddevAccuracy = accuracy.getStandardDeviation();
	
	s.meanErrorRate = errorRate.getMean();
	s.stddevErrorRate = errorRate.getStandardDeviation();
	
	return s;
}
 
开发者ID:openimaj,项目名称:openimaj,代码行数:26,代码来源:AggregatedCMResult.java

示例3: normalize

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1.
 *
 * @param sample Sample to normalize.
 * @return normalized (standardized) sample.
 * @since 2.2
 */
public static double[] normalize(final double[] sample) {
    DescriptiveStatistics stats = new DescriptiveStatistics();

    // Add the data from the series to stats
    for (int i = 0; i < sample.length; i++) {
        stats.addValue(sample[i]);
    }

    // Compute mean and standard deviation
    double mean = stats.getMean();
    double standardDeviation = stats.getStandardDeviation();

    // initialize the standardizedSample, which has the same length as the sample
    double[] standardizedSample = new double[sample.length];

    for (int i = 0; i < sample.length; i++) {
        // z = (x- mean)/standardDeviation
        standardizedSample[i] = (sample[i] - mean) / standardDeviation;
    }
    return standardizedSample;
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:29,代码来源:StatUtils.java

示例4: APARegionStatistics

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public APARegionStatistics(RealMatrix data, int regionWidth) {
    int max = data.getColumnDimension();
    int midPoint = max / 2;
    double centralVal = data.getEntry(midPoint, midPoint);

    /** NOTE - indices are inclusive in java, but in python the second index is not inclusive */

    peak2mean = centralVal / ((sum(data.getData()) - centralVal) / (data.getColumnDimension() - 1));

    double avgUL = mean(data.getSubMatrix(0, regionWidth - 1, 0, regionWidth - 1).getData());
    peak2UL = centralVal / avgUL;

    avgUR = mean(data.getSubMatrix(0, regionWidth - 1, max - regionWidth, max - 1).getData());
    peak2UR = centralVal / avgUR;

    double avgLL = mean(data.getSubMatrix(max - regionWidth, max - 1, 0, regionWidth - 1).getData());
    peak2LL = centralVal / avgLL;

    double avgLR = mean(data.getSubMatrix(max - regionWidth, max - 1, max - regionWidth, max - 1).getData());
    peak2LR = centralVal / avgLR;

    DescriptiveStatistics yStats = statistics(data.getSubMatrix(max - regionWidth, max - 1, 0, regionWidth - 1).getData());
    ZscoreLL = (centralVal - yStats.getMean()) / yStats.getStandardDeviation();
}
 
开发者ID:theaidenlab,项目名称:Juicebox,代码行数:25,代码来源:APARegionStatistics.java

示例5: buildFeatureObject

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public Feature buildFeatureObject(DescriptiveStatistics summary,String name){
    double geometricMean = summary.getGeometricMean();
    double kurtosis = summary.getKurtosis();
    double max = summary.getMax();
    double mean = summary.getMean();
    double min = summary.getMin();
    double skewness = summary.getSkewness();
    double standardDeviation = summary.getStandardDeviation();
    double sum = summary.getSum();
    double sumsq = summary.getSumsq();
    double variance = summary.getVariance();
    double[] values = summary.getValues();
    
    
    Feature feature=new Feature(name, name, null, mean, variance, skewness);
    
    
    
   LOG.log(Level.INFO, summary.toString());
   
    
    return feature;        
}
 
开发者ID:dewmal,项目名称:artista,代码行数:24,代码来源:StatisticalAnalyser.java

示例6: drawNormalDistributionChart

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public void drawNormalDistributionChart(double[] values) {
        DescriptiveStatistics stats = new DescriptiveStatistics();

        // Add the data from the array
        for (int i = 0; i < values.length; i++) {
            stats.addValue(values[i]);
        }

// Compute some statistics
        double mean = stats.getMean();
        double std = stats.getStandardDeviation();
        double skewness = stats.getSkewness();
        double variance = stats.getVariance();
        double kurtosis = stats.getKurtosis();
        
        System.out.println(mean + "\t" + std + "\t" + skewness + "\t" + variance + "\t" + kurtosis);
        
        
        stats.clear();
    }
 
开发者ID:dewmal,项目名称:artista,代码行数:21,代码来源:ChartBuilder.java

示例7: AnalysisResultsModel

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public AnalysisResultsModel(ArrayList<Double> firesPerCenturyPerSim, SegmentModel segment, int numberOfSamples) {
	
	this.segment = segment;
	this.numberOfSamples = numberOfSamples;
	
	// Generate Apache Commons descriptive statistics
	stats = new DescriptiveStatistics();
	for (Double val : firesPerCenturyPerSim)
	{
		stats.addValue(val);
	}
	
	meanEventsPerCentury = stats.getMean();
	std = stats.getStandardDeviation();
	median = stats.getPercentile(50);
	CI95 = STDEV_MULTIPLIER_FOR_95 * std;
	CI99 = STDEV_MULTIPLIER_FOR_99 * std;
	
	// Generate Weibull stats
	Weibull weibull = new Weibull(firesPerCenturyPerSim);
	weibullMean = weibull.getMean();
	weibullMedian = weibull.getMedian();
	
	// TODO Elena to check
	weibullCI95Lower = weibull.getExceedencePercentile(5.0);
	weibullCI95Upper = weibull.getExceedencePercentile(95.0);
	
	weibullCI99 = weibull.getExceedencePercentile(99.0) - weibullMedian;
}
 
开发者ID:petebrew,项目名称:fhaes,代码行数:30,代码来源:AnalysisResultsModel.java

示例8: getSkeletonCategoryFromCropper1979

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
private Integer getSkeletonCategoryFromCropper1979(Integer value, DescriptiveStatistics windowStats, Double criticalLevel)
{
	Integer skeletonCategory = 0;
	
	if(criticalLevel==null) criticalLevel = 0.5;
	double mean = windowStats.getMean();
	double stdev = windowStats.getStandardDeviation();
	double smallRingThreshold = mean-(stdev*criticalLevel);
	int min = (int) windowStats.getMin();
	
	if(value == min) 
	{
		skeletonCategory = 10;
	}
	else if(value > smallRingThreshold) 
	{
		skeletonCategory = 0;
	}
	else
	{
		Integer range = (int) (smallRingThreshold - min);
		Integer categoryStepSize = range / 10;
		skeletonCategory = (int) (0-((value-smallRingThreshold)/categoryStepSize));
	}
		
	
	return skeletonCategory;
}
 
开发者ID:ltrr-arizona-edu,项目名称:tellervo,代码行数:29,代码来源:SkeletonPlot.java

示例9: getFeatureMatchDistribution

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public static double getFeatureMatchDistribution(GraphDatabaseService db, Long patternId)
{
    Transaction tx = db.beginTx();
    Node startNode = db.getNodeById(patternId);

    // Feature match distribution
    List<Double> matches = IteratorUtil.asCollection(db.traversalDescription()
            .depthFirst()
            .relationships(withName("HAS_CLASS"), Direction.OUTGOING)
            .evaluator(Evaluators.fromDepth(1))
            .evaluator(Evaluators.toDepth(1))
            .traverse(startNode)
            .relationships())
            .stream()
            .map(p -> ((Integer)p.getProperty("matches")).doubleValue())
            .collect(Collectors.toList());

    tx.success();
    tx.close();

    double variance = 1.0;

    if(matches.size() > 1) {
        Double[] matchArr = matches.toArray(new Double[matches.size()]);
        // Get the standard deviation
        DescriptiveStatistics ds = new DescriptiveStatistics();
        matches.forEach(m -> ds.addValue(m.doubleValue() / StatUtils.sum(ArrayUtils.toPrimitive(matchArr))));
        variance = ds.getStandardDeviation();
    }

    return variance;
}
 
开发者ID:Graphify,项目名称:graphify,代码行数:33,代码来源:VectorUtil.java

示例10: main

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
	 * @param args
	 * @throws IOException 
	 */
	public static void main(String[] args) throws IOException {

		//String path = args[0];
		String path = "/home/mgerlich/workspace-3.5/MetFusion2/testdata/Hill/results/2010-06-15_16-49-42/";
		File dir = new File(path);
		//File[] list = dir.listFiles(new MyFileFilter(".vec"));
		File[] results = dir.listFiles(new MyFileFilter("_result.log"));
		
		Arrays.sort(results);
		
		//if (list.length != 102 || results.length != 102) {
		if (results.length != 102) {
			System.err.println("wrong number of results files - aborting...");
			System.err.println("expected 102 - was " + results.length + " for _result.log files.");
			//System.exit(-1);
		}
		else System.out.println("expected 102 results found :)");
		
		String[] cids = new String[results.length];
		int[] worstRanks = new int[results.length];
		int[] threshRanks = new int[results.length];
		int[] threshTiedRanks = new int[results.length];
		int[] weightRanks = new int[results.length];
		int[] weightTiedRanks = new int[results.length];
		
		for (int i = 0; i < results.length; i++) {
			File f = results[i];
			System.out.println(f);
			BufferedReader br = new BufferedReader(new FileReader(f));
			String line = "";
			while((line = br.readLine()) != null) {
				/**
				 * String header = "## CID\tworstRank\tthresholdRank\tweightedRank\tthresholdTiedRank\tweightedTiedRank\n";
				 */
				if(line.startsWith("##") || line.startsWith("CID"))
					continue;
				
				String[] split = line.split("\t");
				cids[i] = split[0];
				worstRanks[i] = Integer.parseInt(split[1]);
				threshRanks[i] = Integer.parseInt(split[2]);
				weightRanks[i] = Integer.parseInt(split[3]);
				threshTiedRanks[i] = Integer.parseInt(split[4]);
				weightTiedRanks[i] = Integer.parseInt(split[5]);
			}
		}
		
		
		// Get a DescriptiveStatistics instance
		DescriptiveStatistics stats = new DescriptiveStatistics();

		// Add the data from the array
		for( int i = 0; i < threshTiedRanks.length; i++) {
		        stats.addValue(threshTiedRanks[i]);
		}

		// Compute some statistics
		double mean = stats.getMean();
		double std = stats.getStandardDeviation();
		System.out.println("mean=" + mean + "\tsd=" + std);
		
//		double mean2 = StatUtils.mean(weightTiedRanks);
//		double std2 = StatUtils.variance(weightTiedRanks);
//		double median = StatUtils.percentile(weightTiedRanks, 0.5);
		//double median = stats.getMedian();

	}
 
开发者ID:mgerlich,项目名称:MetFusion,代码行数:72,代码来源:EvaluateResults.java


注:本文中的org.apache.commons.math.stat.descriptive.DescriptiveStatistics.getStandardDeviation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。