当前位置: 首页>>代码示例>>Java>>正文


Java DescriptiveStatistics.addValue方法代码示例

本文整理汇总了Java中org.apache.commons.math.stat.descriptive.DescriptiveStatistics.addValue方法的典型用法代码示例。如果您正苦于以下问题:Java DescriptiveStatistics.addValue方法的具体用法?Java DescriptiveStatistics.addValue怎么用?Java DescriptiveStatistics.addValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math.stat.descriptive.DescriptiveStatistics的用法示例。


在下文中一共展示了DescriptiveStatistics.addValue方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: frequencyToStatistics

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public static DescriptiveStatistics frequencyToStatistics(Frequency frequency)
{
    Iterator<Comparable<?>> comparableIterator = frequency.valuesIterator();
    DescriptiveStatistics result = new DescriptiveStatistics();
    while (comparableIterator.hasNext()) {
        Comparable<?> next = comparableIterator.next();
        long count = frequency.getCount(next);

        for (int i = 0; i < count; i++) {
            if (next instanceof Number) {
                result.addValue(((Number) next).doubleValue());
            }
        }
    }

    return result;
}
 
开发者ID:UKPLab,项目名称:argument-reasoning-comprehension-task,代码行数:18,代码来源:CollectionUtils.java

示例2: getClusteringInfo

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public String getClusteringInfo() {

		StringBuffer sb = new StringBuffer();
		sb.append("concept clustering:\n");

		sb.append("mentions:\t");
		if (this.groupedConcepts != null) {
			int mentions = this.groupedConcepts.stream().mapToInt(x -> x.size()).sum();
			sb.append(mentions);
		} else {
			sb.append("none");
		}
		sb.append("\n");

		sb.append("concepts:\t");
		sb.append(this.concepts.size());
		sb.append("\n");

		DescriptiveStatistics lengthStat = new DescriptiveStatistics();
		for (List<Concept> cluster : this.groupedConcepts)
			lengthStat.addValue(cluster.size());
		sb.append("cluster size:\n");
		sb.append(lengthStat);

		return sb.toString();
	}
 
开发者ID:UKPLab,项目名称:ijcnlp2017-cmaps,代码行数:27,代码来源:ExtractionResult.java

示例3: scale

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
private void scale(double[][] peakList) {
    DescriptiveStatistics stdDevStats = new DescriptiveStatistics();

    for (int columns = 0; columns < peakList.length; columns++) {
        stdDevStats.clear();
        for (int row = 0; row < peakList[columns].length; row++) {
            if (!Double.isInfinite(peakList[columns][row])
                    && !Double.isNaN(peakList[columns][row])) {
                stdDevStats.addValue(peakList[columns][row]);
            }
        }

        double stdDev = stdDevStats.getStandardDeviation();

        for (int row = 0; row < peakList[columns].length; row++) {
            if (stdDev != 0) {
                peakList[columns][row] = peakList[columns][row] / stdDev;
            }
        }
    }
}
 
开发者ID:mzmine,项目名称:mzmine2,代码行数:22,代码来源:HeatMapTask.java

示例4: getCoprocessorExecutionStatistics

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public Map<String, DescriptiveStatistics> getCoprocessorExecutionStatistics() {
  Map<String, DescriptiveStatistics> results = new HashMap<String, DescriptiveStatistics>();
  for (RegionEnvironment env : coprocessors) {
    DescriptiveStatistics ds = new DescriptiveStatistics();
    if (env.getInstance() instanceof RegionObserver) {
      for (Long time : env.getExecutionLatenciesNanos()) {
        ds.addValue(time);
      }
      // Ensures that web ui circumvents the display of NaN values when there are zero samples.
      if (ds.getN() == 0) {
        ds.addValue(0);
      }
      results.put(env.getInstance().getClass().getSimpleName(), ds);
    }
  }
  return results;
}
 
开发者ID:grokcoder,项目名称:pbase,代码行数:18,代码来源:RegionCoprocessorHost.java

示例5: testTakedown

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
@Override
protected void testTakedown() throws IOException {
  if (this.gets != null && this.gets.size() > 0) {
    this.table.get(gets);
    this.gets.clear();
  }
  super.testTakedown();
  if (opts.reportLatency) {
    Arrays.sort(times);
    DescriptiveStatistics ds = new DescriptiveStatistics();
    for (double t : times) {
      ds.addValue(t);
    }
    LOG.info("randomRead latency log (ms), on " + times.length + " measures");
    LOG.info("99.9999% = " + ds.getPercentile(99.9999d));
    LOG.info(" 99.999% = " + ds.getPercentile(99.999d));
    LOG.info("  99.99% = " + ds.getPercentile(99.99d));
    LOG.info("   99.9% = " + ds.getPercentile(99.9d));
    LOG.info("     99% = " + ds.getPercentile(99d));
    LOG.info("     95% = " + ds.getPercentile(95d));
    LOG.info("     90% = " + ds.getPercentile(90d));
    LOG.info("     80% = " + ds.getPercentile(80d));
    LOG.info("Standard Deviation = " + ds.getStandardDeviation());
    LOG.info("Mean = " + ds.getMean());
  }
}
 
开发者ID:tenggyut,项目名称:HIndex,代码行数:27,代码来源:PerformanceEvaluation.java

示例6: computeStatistics

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Compute the current aggregate statistics of the
 * accumulated results. 
 * 
 * @return the current aggregate statistics
 */
public AggregateStatistics computeStatistics() {
	DescriptiveStatistics accuracy = new DescriptiveStatistics();
	DescriptiveStatistics errorRate = new DescriptiveStatistics();
	
	for (CMResult<CLASS> result : matrices) {
		ConfusionMatrix<CLASS> m = result.getMatrix();
		accuracy.addValue(m.getAccuracy());
		errorRate.addValue(m.getErrorRate());
	}
	
	AggregateStatistics s = new AggregateStatistics();
	s.meanAccuracy = accuracy.getMean();
	s.stddevAccuracy = accuracy.getStandardDeviation();
	
	s.meanErrorRate = errorRate.getMean();
	s.stddevErrorRate = errorRate.getStandardDeviation();
	
	return s;
}
 
开发者ID:openimaj,项目名称:openimaj,代码行数:26,代码来源:AggregatedCMResult.java

示例7: normalize

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1.
 *
 * @param sample Sample to normalize.
 * @return normalized (standardized) sample.
 * @since 2.2
 */
public static double[] normalize(final double[] sample) {
    DescriptiveStatistics stats = new DescriptiveStatistics();

    // Add the data from the series to stats
    for (int i = 0; i < sample.length; i++) {
        stats.addValue(sample[i]);
    }

    // Compute mean and standard deviation
    double mean = stats.getMean();
    double standardDeviation = stats.getStandardDeviation();

    // initialize the standardizedSample, which has the same length as the sample
    double[] standardizedSample = new double[sample.length];

    for (int i = 0; i < sample.length; i++) {
        // z = (x- mean)/standardDeviation
        standardizedSample[i] = (sample[i] - mean) / standardDeviation;
    }
    return standardizedSample;
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:29,代码来源:StatUtils.java

示例8: testNormalize2

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Run with 77 random values, assuming that the outcome has a mean of 0 and a standard deviation of 1 with a
 * precision of 1E-10.
 */

public void testNormalize2() {
    // create an sample with 77 values    
    int length = 77;
    double sample[] = new double[length];
    for (int i = 0; i < length; i++) {
        sample[i] = Math.random();
    }
    // normalize this sample
    double standardizedSample[] = StatUtils.normalize(sample);

    DescriptiveStatistics stats = new DescriptiveStatistics();
    // Add the data from the array
    for (int i = 0; i < length; i++) {
        stats.addValue(standardizedSample[i]);
    }
    // the calculations do have a limited precision    
    double distance = 1E-10;
    // check the mean an standard deviation
    assertEquals(0.0, stats.getMean(), distance);
    assertEquals(1.0, stats.getStandardDeviation(), distance);

}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:28,代码来源:StatUtilsTest.java

示例9: testNormalize2

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**
 * Run with 77 random values, assuming that the outcome has a mean of 0 and a standard deviation of 1 with a
 * precision of 1E-10.
 */

@Test
public void testNormalize2() {
    // create an sample with 77 values    
    int length = 77;
    double sample[] = new double[length];
    for (int i = 0; i < length; i++) {
        sample[i] = Math.random();
    }
    // normalize this sample
    double standardizedSample[] = StatUtils.normalize(sample);

    DescriptiveStatistics stats = new DescriptiveStatistics();
    // Add the data from the array
    for (int i = 0; i < length; i++) {
        stats.addValue(standardizedSample[i]);
    }
    // the calculations do have a limited precision    
    double distance = 1E-10;
    // check the mean an standard deviation
    Assert.assertEquals(0.0, stats.getMean(), distance);
    Assert.assertEquals(1.0, stats.getStandardDeviation(), distance);

}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:29,代码来源:StatUtilsTest.java

示例10: testCostFromStats

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
@Test
public void testCostFromStats() {
  DescriptiveStatistics statOne = new DescriptiveStatistics();
  for (int i =0; i < 100; i++) {
    statOne.addValue(10);
  }
  assertEquals(0, loadBalancer.costFromStats(statOne), 0.01);

  DescriptiveStatistics statTwo = new DescriptiveStatistics();
  for (int i =0; i < 100; i++) {
    statTwo.addValue(0);
  }
  statTwo.addValue(100);
  assertEquals(1, loadBalancer.costFromStats(statTwo), 0.01);

  DescriptiveStatistics statThree = new DescriptiveStatistics();
  for (int i =0; i < 100; i++) {
    statThree.addValue(0);
    statThree.addValue(100);
  }
  assertEquals(0.5, loadBalancer.costFromStats(statThree), 0.01);
}
 
开发者ID:daidong,项目名称:DominoHBase,代码行数:23,代码来源:TestStochasticLoadBalancer.java

示例11: drawNormalDistributionChart

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public void drawNormalDistributionChart(double[] values) {
        DescriptiveStatistics stats = new DescriptiveStatistics();

        // Add the data from the array
        for (int i = 0; i < values.length; i++) {
            stats.addValue(values[i]);
        }

// Compute some statistics
        double mean = stats.getMean();
        double std = stats.getStandardDeviation();
        double skewness = stats.getSkewness();
        double variance = stats.getVariance();
        double kurtosis = stats.getKurtosis();
        
        System.out.println(mean + "\t" + std + "\t" + skewness + "\t" + variance + "\t" + kurtosis);
        
        
        stats.clear();
    }
 
开发者ID:dewmal,项目名称:artista,代码行数:21,代码来源:ChartBuilder.java

示例12: export

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
private static void export(File argumentsWithReasonsFile, File argumentsWithGistFile,
        File outputDir)
        throws Exception
{
    List<StandaloneArgument> arguments = ExportHelper.copyReasonAnnotationsWithGistOnly(
            argumentsWithReasonsFile, argumentsWithGistFile);

    String metaDataCSV = ExportHelper.exportMetaDataToCSV(arguments);
    FileUtils.write(new File(outputDir, "metadata.csv"), metaDataCSV, "utf-8");

    Frequency premisesFrequency = new Frequency();
    DescriptiveStatistics premisesStatistics = new DescriptiveStatistics();

    // and export them all as XMI files using standard DKPro pipeline
    for (StandaloneArgument argument : arguments) {
        JCas jCas = argument.getJCas();
        SimplePipeline.runPipeline(jCas, AnalysisEngineFactory.createEngineDescription(
                XmiWriter.class,
                XmiWriter.PARAM_TARGET_LOCATION, outputDir,
                XmiWriter.PARAM_USE_DOCUMENT_ID, true,
                XmiWriter.PARAM_OVERWRITE, true
        ));

        // count all premises
        int count = JCasUtil.select(jCas, Premise.class).size();
        premisesStatistics.addValue(count);
        premisesFrequency.addValue(count);
    }

    System.out.println("Premises total: " + premisesStatistics.getSum());
    System.out.println("Argument: " + arguments.size());
    System.out.println(premisesFrequency);
}
 
开发者ID:UKPLab,项目名称:argument-reasoning-comprehension-task,代码行数:34,代码来源:Step3dExportGistToXMIFiles.java

示例13: main

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public static void main(String[] args)
        throws IOException
{
    File inputFile = new File(
            "mturk/annotation-task/data/32-reasons-batch-0001-5000-2026args-gold.xml.gz");

    // read all arguments from the original corpus
    List<StandaloneArgument> arguments = XStreamSerializer
            .deserializeArgumentListFromXML(inputFile);
    System.out.println("Arguments: " + arguments.size());

    Frequency frequency = new Frequency();
    DescriptiveStatistics statistics = new DescriptiveStatistics();

    for (StandaloneArgument argument : arguments) {
        JCas jCas = argument.getJCas();
        Collection<Premise> premises = JCasUtil.select(jCas, Premise.class);

        frequency.addValue(premises.size());
        statistics.addValue(premises.size());
    }

    System.out.println(frequency);
    System.out.println(statistics.getSum());
    System.out.println(statistics.getMean());
    System.out.println(statistics.getStandardDeviation());
}
 
开发者ID:UKPLab,项目名称:argument-reasoning-comprehension-task,代码行数:28,代码来源:Step2dGoldReasonStatistics.java

示例14: statistics3

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
public static void statistics3(File inputDir, File outputDir)
        throws IOException
{
    PrintWriter pw = new PrintWriter(new FileWriter(new File(outputDir, "stats3.csv")));
    pw.println(
            "qID\tagreementMean\tagreementStdDev\tqueryText");

    // iterate over query containers
    for (File f : FileUtils.listFiles(inputDir, new String[] { "xml" }, false)) {
        QueryResultContainer queryResultContainer = QueryResultContainer
                .fromXML(FileUtils.readFileToString(f, "utf-8"));

        DescriptiveStatistics statistics = new DescriptiveStatistics();

        for (QueryResultContainer.SingleRankedResult rankedResult : queryResultContainer.rankedResults) {
            Double observedAgreement = rankedResult.observedAgreement;

            if (observedAgreement != null) {
                statistics.addValue(observedAgreement);
            }
        }

        pw.printf(Locale.ENGLISH, "%s\t%.3f\t%.3f\t%s%n",
                queryResultContainer.qID, statistics.getMean(),
                statistics.getStandardDeviation(),
                queryResultContainer.query
        );
    }

    pw.close();
}
 
开发者ID:UKPLab,项目名称:sigir2016-collection-for-focused-retrieval,代码行数:32,代码来源:Step11GoldDataStatistics.java

示例15: winsor2

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; //导入方法依赖的package包/类
/**Winsorise vector x. Adapted from https://www.r-bloggers.com/winsorization/.
 * */
public static List<Float> winsor2(List<Float> x, double multiple) {
			/*
			winsor2<- function (x, multiple=3)
			{
			   med <- median(x)
			   y <- x - med
			   sc <- mad(y, center=0) * multiple
			   y[ y > sc ] <- sc
			   y[ y < -sc ] <- -sc
			   y + med
			}
			*/
	if(multiple <= 0){
		throw new ArithmeticException(); 
	}
	DescriptiveStatistics stats = new DescriptiveStatistics();
	for(float z : x){
		stats.addValue(z);
	}
	float median = (float)stats.getPercentile(50);
	List<Float> y= new ArrayList<Float>(x);
	for(int i= 0; i < x.size(); i++){
		y.set(i, x.get(i) - median);
	}
	float sc= (float) (Utils.medianAbsoluteDeviation(y, 0) * multiple);
	for(int i= 0; i < y.size(); i++){
		if(y.get(i) > sc){
			y.set(i, sc);
		}
		else if(y.get(i) < -sc){
			y.set(i, -sc);
		}
		y.set(i, y.get(i) + median);
	}
	return y;
}
 
开发者ID:dariober,项目名称:ASCIIGenome,代码行数:39,代码来源:Utils.java


注:本文中的org.apache.commons.math.stat.descriptive.DescriptiveStatistics.addValue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。