当前位置: 首页>>代码示例>>Java>>正文


Java TrainingParameters.put方法代码示例

本文整理汇总了Java中opennlp.tools.util.TrainingParameters.put方法的典型用法代码示例。如果您正苦于以下问题:Java TrainingParameters.put方法的具体用法?Java TrainingParameters.put怎么用?Java TrainingParameters.put使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在opennlp.tools.util.TrainingParameters的用法示例。


在下文中一共展示了TrainingParameters.put方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getNLPModel

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static DoccatModel getNLPModel(File openNLPTraining) throws IOException {
	DoccatModel model = null;

	FeatureGenerator[] def = { new BagOfWordsFeatureGenerator() };
	WhitespaceTokenizer tokenizer = WhitespaceTokenizer.INSTANCE;

	DoccatFactory factory = new DoccatFactory(tokenizer, def);
	InputStreamFactory isf = new MarkableFileInputStreamFactory(openNLPTraining);
	ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
	ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);

	TrainingParameters params = TrainingParameters.defaultParams();
	System.out.println(params.algorithm());
	params.put(TrainingParameters.CUTOFF_PARAM, Integer.toString(0));
	params.put(TrainingParameters.ITERATIONS_PARAM, Integer.toString(4000));

	model = DocumentCategorizerME.train("en", sampleStream, params, factory);
	
	evaluateDoccatModel(model, openNLPTraining);

	return model;

}
 
开发者ID:SOBotics,项目名称:SOCVFinder,代码行数:24,代码来源:ModelCreator.java

示例2: main

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void main(String[] args) {
if (args.length < 2) {
    System.out.println("usage: <input> <output>\n");
    System.exit(0);
}

String input = args[0];
String output = args[1];

TrainingParameters params = new TrainingParameters();
params.put(TrainingParameters.CUTOFF_PARAM, Integer.toString(0));
params.put(TrainingParameters.ITERATIONS_PARAM, Integer.toString(100));
//params.put(TrainingParameters.ALGORITHM_PARAM, NaiveBayesTrainer.NAIVE_BAYES_VALUE);

AgeClassifyModel model;
try {
    model = AgeClassifySparkTrainer.createModel("en", input, 
        "opennlp.tools.tokenize.SentenceTokenizer", "opennlp.tools.tokenize.BagOfWordsTokenizer", params);
} catch (IOException e) {
    throw new TerminateToolException(-1,
        "IO error while reading training data or indexing data: " + e.getMessage(), e);
}
CmdLineUtil.writeModel("age classifier", new File(output), model);
   }
 
开发者ID:USCDataScience,项目名称:AgePredictor,代码行数:25,代码来源:AgeClassifySparkTrainer.java

示例3: trainSentences

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void trainSentences(final String inResource, String outFile) throws IOException {
    InputStreamFactory inputStreamFactory = new InputStreamFactory() {
        @Override
        public InputStream createInputStream() throws IOException {
            return Trainer.class.getResourceAsStream(inResource);
        }
    };
    SentenceSampleStream samples = new SentenceSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
    TrainingParameters trainingParameters = new TrainingParameters();
    trainingParameters.put(TrainingParameters.ALGORITHM_PARAM, ModelType.MAXENT.name());
    trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "100");
    trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "0");
    SentenceDetectorFactory sentenceDetectorFactory = SentenceDetectorFactory.create(null, "en", true, null, ".?!".toCharArray());
    SentenceModel sentdetectModel = SentenceDetectorME.train("en", samples, sentenceDetectorFactory, trainingParameters);
    //.train("en", samples, true, null, 100, 0);
    samples.close();
    FileOutputStream out = new FileOutputStream(outFile);
    sentdetectModel.serialize(out);
    out.close();
}
 
开发者ID:jprante,项目名称:elasticsearch-analysis-opennlp,代码行数:21,代码来源:Trainer.java

示例4: trainChunker

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void trainChunker(final String inResource, String outFile) throws IOException {
    InputStreamFactory inputStreamFactory = new InputStreamFactory() {
        @Override
        public InputStream createInputStream() throws IOException {
            return Trainer.class.getResourceAsStream(inResource);
        }
    };
    ChunkSampleStream samples = new ChunkSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
    TrainingParameters trainingParameters = new TrainingParameters();
    trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "70");
    trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "1");

    ChunkerFactory chunkerFactory = ChunkerFactory.create(null);
    ChunkerModel model = ChunkerME.train("en", samples, trainingParameters, chunkerFactory);
    //ChunkerME.train("en", samples, 1, 70);
    samples.close();
    FileOutputStream out = new FileOutputStream(outFile);
    model.serialize(out);
    out.close();
}
 
开发者ID:jprante,项目名称:elasticsearch-analysis-opennlp,代码行数:21,代码来源:Trainer.java

示例5: trainNameFinder

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void trainNameFinder(final String inResource, String outFile) throws IOException {
    InputStreamFactory inputStreamFactory = new InputStreamFactory() {
        @Override
        public InputStream createInputStream() throws IOException {
            return Trainer.class.getResourceAsStream(inResource);
        }
    };
    InputStream in = Trainer.class.getResourceAsStream(inResource);
    NameSampleDataStream samples = new NameSampleDataStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
    TrainingParameters trainingParameters = new TrainingParameters();
    trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "5");
    trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "200");
    byte[] featureGeneratorBytes = null;
    Map<String, Object> resources = Collections.<String, Object>emptyMap();
    SequenceCodec<String> seqCodec = new BioCodec();
    TokenNameFinderFactory tokenNameFinderFactory = TokenNameFinderFactory.create(null, featureGeneratorBytes, resources, seqCodec);
    TokenNameFinderModel model = NameFinderME.train("en", "person", samples, trainingParameters, tokenNameFinderFactory);
    //NameFinderME.train("en", "person", samples, Collections.<String, Object>emptyMap(), 200, 5);
    samples.close();
    FileOutputStream out = new FileOutputStream(outFile);
    model.serialize(out);
    out.close();
}
 
开发者ID:jprante,项目名称:elasticsearch-analysis-opennlp,代码行数:24,代码来源:Trainer.java

示例6: train

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
/**
 * Main entry point for training.
 * 
 * @throws IOException
 *           throws an exception if errors in the various file inputs.
 */
public final void train() throws IOException {
  // load training parameters file
  final String paramFile = this.parsedArguments.getString("params");
  final TrainingParameters params = InputOutputUtils
      .loadTrainingParameters(paramFile);
  String outModel = null;
  if (params.getSettings().get("OutputModel") == null
      || params.getSettings().get("OutputModel").length() == 0) {
    outModel = Files.getNameWithoutExtension(paramFile) + ".bin";
    params.put("OutputModel", outModel);
  } else {
    outModel = Flags.getModel(params);
  }
  final Trainer chunkerTrainer = new DefaultTrainer(params);
  final ChunkerModel trainedModel = chunkerTrainer.train(params);
  CmdLineUtil.writeModel("ixa-pipe-chunk", new File(outModel), trainedModel);
}
 
开发者ID:ixa-ehu,项目名称:ixa-pipe-chunk,代码行数:24,代码来源:CLI.java

示例7: addParamsToTraining

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
/**
 * Adds the params to training.
 *
 * @param trainParams the train params
 */
private static void addParamsToTraining(TrainingParameters trainParams) {
	trainParams.put("Threads", getConfiguration().getString("Threads"));
	trainParams.put("Algorithm", getConfiguration().getString("Algorithm"));
}
 
开发者ID:TekstoSense,项目名称:opennlp-enhancer,代码行数:10,代码来源:NamedEntityTagger.java

示例8: trainTokenizer

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void trainTokenizer(final String inResource, String outFile) throws IOException {
    InputStreamFactory inputStreamFactory = new InputStreamFactory() {
        @Override
        public InputStream createInputStream() throws IOException {
            return Trainer.class.getResourceAsStream(inResource);
        }
    };
    ObjectStream<TokenSample> samples = new TokenSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
    TrainingParameters trainingParameters = new TrainingParameters();
    trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "100");
    trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "5");
    String subclassname = null;
    String langcode = "en";
    Dictionary dict = null;
    Pattern alphanumericpattern = null;

    opennlp.tools.tokenize.TokenizerFactory tokenizerFactory = TokenizerFactory.create(subclassname, langcode, dict, true, alphanumericpattern);
    TokenizerModel model = TokenizerME.train(samples, tokenizerFactory, trainingParameters);
    //TokenizerME.train("en", samples, true, 5, 100);
    samples.close();
    FileOutputStream out = new FileOutputStream(outFile);
    model.serialize(out);
    out.close();
}
 
开发者ID:jprante,项目名称:elasticsearch-analysis-opennlp,代码行数:25,代码来源:Trainer.java

示例9: trainPOS

import opennlp.tools.util.TrainingParameters; //导入方法依赖的package包/类
public static void trainPOS(final String inResource, String outFile) throws IOException {
    InputStreamFactory inputStreamFactory = new InputStreamFactory() {
        @Override
        public InputStream createInputStream() throws IOException {
            return Trainer.class.getResourceAsStream(inResource);
        }
    };
    WordTagSampleStream samples = new WordTagSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
    TrainingParameters trainingParameters = new TrainingParameters();
    trainingParameters.put(TrainingParameters.ALGORITHM_PARAM, ModelType.MAXENT.name());
    trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "100");
    trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "5");
    Dictionary ngramDictionary = null;
    POSDictionary posDictionary = null;
    POSTaggerFactory posTaggerFactory = POSTaggerFactory.create(null, ngramDictionary, posDictionary);
    POSModel model = POSTaggerME.train("en", samples, trainingParameters, posTaggerFactory);
    //POSTaggerME.train("en", samples, ModelType.MAXENT, null, null, 5, 100);
    samples.close();
    FileOutputStream out = new FileOutputStream(outFile);
    model.serialize(out);
    out.close();
}
 
开发者ID:jprante,项目名称:elasticsearch-analysis-opennlp,代码行数:23,代码来源:Trainer.java


注:本文中的opennlp.tools.util.TrainingParameters.put方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。