本文整理汇总了Java中opennlp.tools.util.TrainingParameters类的典型用法代码示例。如果您正苦于以下问题:Java TrainingParameters类的具体用法?Java TrainingParameters怎么用?Java TrainingParameters使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
TrainingParameters类属于opennlp.tools.util包,在下文中一共展示了TrainingParameters类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getNLPModel
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static DoccatModel getNLPModel(File openNLPTraining) throws IOException {
DoccatModel model = null;
FeatureGenerator[] def = { new BagOfWordsFeatureGenerator() };
WhitespaceTokenizer tokenizer = WhitespaceTokenizer.INSTANCE;
DoccatFactory factory = new DoccatFactory(tokenizer, def);
InputStreamFactory isf = new MarkableFileInputStreamFactory(openNLPTraining);
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
TrainingParameters params = TrainingParameters.defaultParams();
System.out.println(params.algorithm());
params.put(TrainingParameters.CUTOFF_PARAM, Integer.toString(0));
params.put(TrainingParameters.ITERATIONS_PARAM, Integer.toString(4000));
model = DocumentCategorizerME.train("en", sampleStream, params, factory);
evaluateDoccatModel(model, openNLPTraining);
return model;
}
示例2: main
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static void main(String[] args) {
if (args.length < 2) {
System.out.println("usage: <input> <output>\n");
System.exit(0);
}
String input = args[0];
String output = args[1];
TrainingParameters params = new TrainingParameters();
params.put(TrainingParameters.CUTOFF_PARAM, Integer.toString(0));
params.put(TrainingParameters.ITERATIONS_PARAM, Integer.toString(100));
//params.put(TrainingParameters.ALGORITHM_PARAM, NaiveBayesTrainer.NAIVE_BAYES_VALUE);
AgeClassifyModel model;
try {
model = AgeClassifySparkTrainer.createModel("en", input,
"opennlp.tools.tokenize.SentenceTokenizer", "opennlp.tools.tokenize.BagOfWordsTokenizer", params);
} catch (IOException e) {
throw new TerminateToolException(-1,
"IO error while reading training data or indexing data: " + e.getMessage(), e);
}
CmdLineUtil.writeModel("age classifier", new File(output), model);
}
示例3: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static AgeClassifyModel train(String languageCode,
ObjectStream<AuthorAgeSample> samples, TrainingParameters trainParams,
AgeClassifyFactory factory) throws IOException {
Map<String, String> entries = new HashMap<String, String>();
MaxentModel ageModel = null;
TrainerType trainerType = AgeClassifyTrainerFactory
.getTrainerType(trainParams.getSettings());
ObjectStream<Event> eventStream = new AgeClassifyEventStream(samples,
factory.createContextGenerator());
EventTrainer trainer = AgeClassifyTrainerFactory
.getEventTrainer(trainParams.getSettings(), entries);
ageModel = trainer.train(eventStream);
Map<String, String> manifestInfoEntries = new HashMap<String, String>();
return new AgeClassifyModel(languageCode, ageModel, manifestInfoEntries,
factory);
}
示例4: trainSentences
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static void trainSentences(final String inResource, String outFile) throws IOException {
InputStreamFactory inputStreamFactory = new InputStreamFactory() {
@Override
public InputStream createInputStream() throws IOException {
return Trainer.class.getResourceAsStream(inResource);
}
};
SentenceSampleStream samples = new SentenceSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
TrainingParameters trainingParameters = new TrainingParameters();
trainingParameters.put(TrainingParameters.ALGORITHM_PARAM, ModelType.MAXENT.name());
trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "100");
trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "0");
SentenceDetectorFactory sentenceDetectorFactory = SentenceDetectorFactory.create(null, "en", true, null, ".?!".toCharArray());
SentenceModel sentdetectModel = SentenceDetectorME.train("en", samples, sentenceDetectorFactory, trainingParameters);
//.train("en", samples, true, null, 100, 0);
samples.close();
FileOutputStream out = new FileOutputStream(outFile);
sentdetectModel.serialize(out);
out.close();
}
示例5: trainChunker
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static void trainChunker(final String inResource, String outFile) throws IOException {
InputStreamFactory inputStreamFactory = new InputStreamFactory() {
@Override
public InputStream createInputStream() throws IOException {
return Trainer.class.getResourceAsStream(inResource);
}
};
ChunkSampleStream samples = new ChunkSampleStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
TrainingParameters trainingParameters = new TrainingParameters();
trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "70");
trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "1");
ChunkerFactory chunkerFactory = ChunkerFactory.create(null);
ChunkerModel model = ChunkerME.train("en", samples, trainingParameters, chunkerFactory);
//ChunkerME.train("en", samples, 1, 70);
samples.close();
FileOutputStream out = new FileOutputStream(outFile);
model.serialize(out);
out.close();
}
示例6: trainNameFinder
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static void trainNameFinder(final String inResource, String outFile) throws IOException {
InputStreamFactory inputStreamFactory = new InputStreamFactory() {
@Override
public InputStream createInputStream() throws IOException {
return Trainer.class.getResourceAsStream(inResource);
}
};
InputStream in = Trainer.class.getResourceAsStream(inResource);
NameSampleDataStream samples = new NameSampleDataStream(new PlainTextByLineStream(inputStreamFactory, StandardCharsets.UTF_8));
TrainingParameters trainingParameters = new TrainingParameters();
trainingParameters.put(TrainingParameters.ITERATIONS_PARAM, "5");
trainingParameters.put(TrainingParameters.CUTOFF_PARAM, "200");
byte[] featureGeneratorBytes = null;
Map<String, Object> resources = Collections.<String, Object>emptyMap();
SequenceCodec<String> seqCodec = new BioCodec();
TokenNameFinderFactory tokenNameFinderFactory = TokenNameFinderFactory.create(null, featureGeneratorBytes, resources, seqCodec);
TokenNameFinderModel model = NameFinderME.train("en", "person", samples, trainingParameters, tokenNameFinderFactory);
//NameFinderME.train("en", "person", samples, Collections.<String, Object>emptyMap(), 200, 5);
samples.close();
FileOutputStream out = new FileOutputStream(outFile);
model.serialize(out);
out.close();
}
示例7: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public final LemmatizerModel train(final TrainingParameters params) {
// features
if (getLemmatizerFactory() == null) {
throw new IllegalStateException(
"Classes derived from AbstractLemmatizerTrainer must "
+ " create a LemmatizerFactory features!");
}
// training model
LemmatizerModel trainedModel = null;
LemmatizerEvaluator lemmatizerEvaluator = null;
try {
trainedModel = LemmatizerME.train(this.lang, this.trainSamples, params,
getLemmatizerFactory());
final LemmatizerME lemmatizer = new LemmatizerME(trainedModel);
lemmatizerEvaluator = new LemmatizerEvaluator(lemmatizer);
lemmatizerEvaluator.evaluate(this.testSamples);
} catch (final IOException e) {
System.err.println("IO error while loading training and test sets!");
e.printStackTrace();
System.exit(1);
}
System.out.println("Final result: " + lemmatizerEvaluator.getWordAccuracy());
return trainedModel;
}
示例8: AbstractTaggerTrainer
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
/**
* Construct an AbstractTrainer. In the params parameter there is information
* about the language, the featureset, and whether to use pos tag dictionaries
* or automatically created dictionaries from the training set.
*
* @param params
* the training parameters
* @throws IOException
* the io exceptions
*/
public AbstractTaggerTrainer(final TrainingParameters params) throws IOException {
this.lang = Flags.getLanguage(params);
final String trainData = Flags.getDataSet("TrainSet", params);
final String testData = Flags.getDataSet("TestSet", params);
final ObjectStream<String> trainStream = InputOutputUtils
.readFileIntoMarkableStreamFactory(trainData);
this.trainSamples = new MorphoSampleStream(trainStream);
final ObjectStream<String> testStream = InputOutputUtils
.readFileIntoMarkableStreamFactory(testData);
this.testSamples = new MorphoSampleStream(testStream);
final ObjectStream<String> dictStream = InputOutputUtils
.readFileIntoMarkableStreamFactory(trainData);
setDictSamples(new MorphoSampleStream(dictStream));
this.dictCutOff = Flags.getAutoDictFeatures(params);
this.ngramCutOff = Flags.getNgramDictFeatures(params);
}
示例9: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public final POSModel train(final TrainingParameters params) {
// features
if (getPosTaggerFactory() == null) {
throw new IllegalStateException(
"Classes derived from AbstractTrainer must "
+ " create a POSTaggerFactory features!");
}
// training model
POSModel trainedModel = null;
POSEvaluator posEvaluator = null;
try {
trainedModel = POSTaggerME.train(this.lang, this.trainSamples, params,
getPosTaggerFactory());
final POSTaggerME posTagger = new POSTaggerME(trainedModel);
posEvaluator = new POSEvaluator(posTagger);
posEvaluator.evaluate(this.testSamples);
} catch (final IOException e) {
System.err.println("IO error while loading training and test sets!");
e.printStackTrace();
System.exit(1);
}
System.out.println("Final result: " + posEvaluator.getWordAccuracy());
return trainedModel;
}
示例10: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
/**
* Main entry point for training.
*
* @throws IOException
* throws an exception if errors in the various file inputs.
*/
public final void train() throws IOException {
// load training parameters file
final String paramFile = this.parsedArguments.getString("params");
final TrainingParameters params = InputOutputUtils
.loadTrainingParameters(paramFile);
String outModel = null;
if (params.getSettings().get("OutputModel") == null
|| params.getSettings().get("OutputModel").length() == 0) {
outModel = Files.getNameWithoutExtension(paramFile) + ".bin";
params.put("OutputModel", outModel);
} else {
outModel = Flags.getModel(params);
}
final Trainer chunkerTrainer = new DefaultTrainer(params);
final ChunkerModel trainedModel = chunkerTrainer.train(params);
CmdLineUtil.writeModel("ixa-pipe-chunk", new File(outModel), trainedModel);
}
示例11: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public final ChunkerModel train(final TrainingParameters params) {
// features
if (getChunkerFactory() == null) {
throw new IllegalStateException(
"Classes derived from AbstractTrainer must "
+ " create a ChunkerFactory features!");
}
// training model
ChunkerModel trainedModel = null;
ChunkerEvaluator chunkerEvaluator = null;
try {
trainedModel = ChunkerME.train(lang, trainSamples, params,
getChunkerFactory());
final Chunker chunker = new ChunkerME(trainedModel);
chunkerEvaluator = new ChunkerEvaluator(chunker);
chunkerEvaluator.evaluate(this.testSamples);
} catch (IOException e) {
System.err.println("IO error while loading traing and test sets!");
e.printStackTrace();
System.exit(1);
}
System.out.println("Final result: " + chunkerEvaluator.getFMeasure());
return trainedModel;
}
示例12: train
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static void train(String file_train, String file_model) throws IOException {
DoccatModel model = null;
ObjectStream<String> lineStream =
new PlainTextByLineStream(new MarkableFileInputStreamFactory(
new File(file_train)), "UTF-8");
ObjectStream<DocumentSample> sampleStream =
new DocumentSampleStream(lineStream);
TrainingParameters param = TrainingParameters.defaultParams();
DoccatFactory factory = new DoccatFactory();
model = DocumentCategorizerME.train("en", sampleStream,param,factory);
model.serialize(new FileOutputStream(file_model));
}
示例13: crossValidate
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
/**
* Main access to the cross validation.
* @throws IOException
* input output exception if problems with corpora
*/
public final void crossValidate() throws IOException {
final String paramFile = this.parsedArguments.getString("params");
final TrainingParameters params = InputOutputUtils
.loadTrainingParameters(paramFile);
final POSCrossValidator crossValidator = new POSCrossValidator(params);
crossValidator.crossValidate(params);
}
示例14: getComponent
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static String getComponent(final TrainingParameters params) {
String component = null;
if (params.getSettings().get("Component") == null) {
componentException();
} else {
component = params.getSettings().get("Component");
}
return component;
}
示例15: getLanguage
import opennlp.tools.util.TrainingParameters; //导入依赖的package包/类
public static String getLanguage(final TrainingParameters params) {
String lang = null;
if (params.getSettings().get("Language") == null) {
langException();
} else {
lang = params.getSettings().get("Language");
}
return lang;
}