本文整理汇总了Java中net.jafama.FastMath.ceil方法的典型用法代码示例。如果您正苦于以下问题:Java FastMath.ceil方法的具体用法?Java FastMath.ceil怎么用?Java FastMath.ceil使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类net.jafama.FastMath
的用法示例。
在下文中一共展示了FastMath.ceil方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: strPartition
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Recursively partition.
*
* @param objs Object list
* @param start Subinterval start
* @param end Subinterval end
* @param depth Iteration depth (must be less than dimensionality!)
* @param dims Total number of dimensions
* @param maxEntries Maximum page size
* @param c Comparison helper
* @param ret Output list
* @param <T> data type
*/
protected <T extends SpatialComparable> void strPartition(List<T> objs, int start, int end, int depth, int dims, int maxEntries, SpatialSingleMeanComparator c, List<List<T>> ret) {
final int p = (int) FastMath.ceil((end - start) / (double) maxEntries);
final int s = (int) FastMath.ceil(FastMath.pow(p, 1.0 / (dims - depth)));
final double len = end - start; // double intentional!
for (int i = 0; i < s; i++) {
// We don't completely sort, but only ensure the quantile is invariant.
int s2 = start + (int) ((i * len) / s);
int e2 = start + (int) (((i + 1) * len) / s);
// LoggingUtil.warning("STR " + dim + " s2:" + s2 + " e2:" + e2);
if (e2 < end) {
c.setDimension(depth);
QuickSelect.quickSelect(objs, c, s2, end, e2);
}
if (depth + 1 == dims) {
ret.add(objs.subList(s2, e2));
} else {
// Descend
strPartition(objs, s2, e2, depth + 1, dims, maxEntries, c, ret);
}
}
}
示例2: computeMeans
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* The specified sorted list of dense subspaces is divided into the selected
* set I and the pruned set P. For each set the mean of the cover fractions is
* computed.
*
* @param denseSubspaces the dense subspaces in reverse order by their
* coverage
* @return the mean of the cover fractions, the first value is the mean of the
* selected set I, the second value is the mean of the pruned set P.
*/
private int[][] computeMeans(List<CLIQUESubspace<V>> denseSubspaces) {
int n = denseSubspaces.size() - 1;
int[] mi = new int[n + 1], mp = new int[n + 1];
double resultMI = 0, resultMP = 0;
for(int i = 0; i < denseSubspaces.size(); i++) {
resultMI += denseSubspaces.get(i).getCoverage();
resultMP += denseSubspaces.get(n - i).getCoverage();
mi[i] = (int) FastMath.ceil(resultMI / (i + 1));
if(i != n) {
mp[n - 1 - i] = (int) FastMath.ceil(resultMP / (i + 1));
}
}
return new int[][] { mi, mp };
}
示例3: runForEachK
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Iterate over the k range.
*
* @param prefix Prefix string
* @param startk Start k
* @param stepk Step k
* @param maxk Max k
* @param runner Runner to run
* @param out Output function
*/
private void runForEachK(String prefix, int startk, int stepk, int maxk, IntFunction<OutlierResult> runner, BiConsumer<String, OutlierResult> out) {
if(isDisabled(prefix)) {
LOG.verbose("Skipping (disabled): " + prefix);
return; // Disabled
}
LOG.verbose("Running " + prefix);
final int digits = (int) FastMath.ceil(FastMath.log10(maxk + 1));
final String format = "%s-%0" + digits + "d";
for(int k = startk; k <= maxk; k += stepk) {
Duration time = LOG.newDuration(this.getClass().getCanonicalName() + "." + prefix + ".k" + k + ".runtime").begin();
OutlierResult result = runner.apply(k);
LOG.statistics(time.end());
if(result != null) {
out.accept(String.format(Locale.ROOT, format, prefix, k), result);
result.getHierarchy().removeSubtree(result);
}
}
}
示例4: partition
import net.jafama.FastMath; //导入方法依赖的package包/类
@Override
public <T extends SpatialComparable> List<List<T>> partition(List<T> spatialObjects, int minEntries, int maxEntries) {
final int dims = spatialObjects.get(0).getDimensionality();
final int p = (int) FastMath.ceil(spatialObjects.size() / (double) maxEntries);
List<List<T>> ret = new ArrayList<>(p);
strPartition(spatialObjects, 0, spatialObjects.size(), 0, dims, maxEntries, new SpatialSingleMeanComparator(0), ret);
return ret;
}
示例5: colorMultiply
import net.jafama.FastMath; //导入方法依赖的package包/类
private int colorMultiply(int col, double reldist, boolean ceil) {
if(steps > 0) {
if(!ceil) {
reldist = FastMath.round(reldist * steps) / steps;
}
else {
reldist = FastMath.ceil(reldist * steps) / steps;
}
}
else if(steps < 0 && reldist > 0.) {
double s = reldist * -steps;
double off = Math.abs(s - FastMath.round(s));
double factor = -steps * 1. / 1000; // height;
if(off < factor) { // Blend with black:
factor = (off / factor);
int a = (col >> 24) & 0xFF;
a = (int) (a * FastMath.sqrt(reldist)) & 0xFF;
a = (int) ((1 - factor) * 0xFF + factor * a);
int r = (int) (factor * ((col >> 16) & 0xFF));
int g = (int) (factor * ((col >> 8) & 0xFF));
int b = (int) (factor * (col & 0xFF));
return a << 24 | r << 16 | g << 8 | b;
}
}
int a = (col >> 24) & 0xFF, r = (col >> 16) & 0xFF, g = (col >> 8) & 0xFF,
b = (col) & 0xFF;
a = (int) (a * FastMath.sqrt(reldist)) & 0xFF;
return a << 24 | r << 16 | g << 8 | b;
}
示例6: strPartition
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Recursively partition.
*
* @param objs Object list
* @param start Subinterval start
* @param end Subinterval end
* @param depth Iteration depth (must be less than dimensionality!)
* @param dims Total number of dimensions
* @param maxEntries Maximum page size
* @param c Comparison helper
* @param ret Output list
* @param <T> data type
*/
protected <T extends SpatialComparable> void strPartition(List<T> objs, int start, int end, int depth, int dims, int maxEntries, SpatialSingleMeanComparator c, List<List<T>> ret) {
final int p = (int) FastMath.ceil((end - start) / (double) maxEntries);
// Compute min and max:
double[] mm = new double[dims * 2];
for (int d = 0; d < mm.length; d += 2) {
mm[d] = Double.POSITIVE_INFINITY; // min <- +inf
mm[d + 1] = Double.NEGATIVE_INFINITY; // max <- -inf
}
for (int i = start; i < end; i++) {
T o = objs.get(i);
for (int d1 = 0, d2 = 0; d2 < mm.length; d1++, d2 += 2) {
mm[d2] = Math.min(mm[d2], o.getMin(d1));
mm[d2 + 1] = Math.max(mm[d2 + 1], o.getMax(d1));
}
}
// Find maximum and compute extends
double maxex = 0.0;
int sdim = depth;
double[] exts = new double[dims];
for (int d = 0; d < mm.length; d += 2) {
final double extend = mm[d + 1] - mm[d];
if (extend > maxex) {
maxex = extend;
sdim = d >>> 1;
}
exts[d >>> 1] = extend;
}
// Compute sum of the k largest extends:
Arrays.sort(exts);
double extsum = 0.;
for (int d = depth; d < exts.length; d++) {
extsum += exts[d];
}
// Chose the number of partitions:
final int s;
if (maxex > 0. && depth + 1 < dims) {
s = (int) FastMath.ceil(FastMath.pow(p, 1.0 / (dims - depth)) * (dims - depth) * maxex / extsum);
} else {
s = (int) FastMath.ceil(FastMath.pow(p, 1.0 / (dims - depth)));
}
final double len = end - start; // double intentional!
for (int i = 0; i < s; i++) {
// We don't completely sort, but only ensure the quantile is invariant.
int s2 = start + (int) ((i * len) / s);
int e2 = start + (int) (((i + 1) * len) / s);
// LoggingUtil.warning("STR " + dim + " s2:" + s2 + " e2:" + e2);
if (e2 < end) {
c.setDimension(sdim);
QuickSelect.quickSelect(objs, c, s2, end, e2);
}
if (depth + 1 == dims) {
ret.add(objs.subList(s2, e2));
} else {
// Descend
strPartition(objs, s2, e2, depth + 1, dims, maxEntries, c, ret);
}
}
}
示例7: strPartition
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Recursively partition.
*
* @param objs Object list
* @param start Subinterval start
* @param end Subinterval end
* @param depth Iteration depth (must be less than dimensionality!)
* @param dims Total number of dimensions
* @param maxEntries Maximum page size
* @param c Comparison helper
* @param ret Output list
* @param <T> data type
*/
protected <T extends SpatialComparable> void strPartition(List<T> objs, int start, int end, int depth, int dims, int maxEntries, SpatialSingleMeanComparator c, List<List<T>> ret) {
final int p = (int) FastMath.ceil((end - start) / (double) maxEntries);
// Compute min and max:
double[] mm = new double[dims * 2];
for (int d = 0; d < mm.length; d += 2) {
mm[d] = Double.POSITIVE_INFINITY; // min <- +inf
mm[d + 1] = Double.NEGATIVE_INFINITY; // max <- -inf
}
for (int i = start; i < end; i++) {
T o = objs.get(i);
for (int d1 = 0, d2 = 0; d2 < mm.length; d1++, d2 += 2) {
mm[d2] = Math.min(mm[d2], o.getMin(d1));
mm[d2 + 1] = Math.max(mm[d2 + 1], o.getMax(d1));
}
}
// Find maximum and compute extends
double maxex = 0.0;
int sdim = -1;
for (int d = 0; d < mm.length; d += 2) {
final double extend = mm[d + 1] - mm[d];
if (extend > maxex) {
maxex = extend;
sdim = d >> 1;
}
}
// Chose the number of partitions:
final int s = (int) FastMath.ceil(FastMath.pow(p, 1.0 / (dims - depth)));
final double len = end - start; // double intentional!
for (int i = 0; i < s; i++) {
// We don't completely sort, but only ensure the quantile is invariant.
int s2 = start + (int) ((i * len) / s);
int e2 = start + (int) (((i + 1) * len) / s);
// LoggingUtil.warning("STR " + dim + " s2:" + s2 + " e2:" + e2);
if (e2 < end) {
c.setDimension(sdim);
QuickSelect.quickSelect(objs, c, s2, end, e2);
}
if (depth + 1 == dims) {
ret.add(objs.subList(s2, e2));
} else {
// Descend
strPartition(objs, s2, e2, depth + 1, dims, maxEntries, c, ret);
}
}
}
示例8: initHeap
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Initializes the heap with the root intervals.
*
* @param heap the heap to be initialized
* @param relation the database storing the parameterization functions
* @param dim the dimensionality of the database
* @param ids the ids of the database
*/
private void initHeap(ObjectHeap<IntegerPriorityObject<CASHInterval>> heap, Relation<ParameterizationFunction> relation, int dim, DBIDs ids) {
CASHIntervalSplit split = new CASHIntervalSplit(relation, minPts);
// determine minimum and maximum function value of all functions
double[] minMax = determineMinMaxDistance(relation, dim);
double d_min = minMax[0], d_max = minMax[1];
double dIntervalLength = d_max - d_min;
int numDIntervals = (int) FastMath.ceil(dIntervalLength / jitter);
double dIntervalSize = dIntervalLength / numDIntervals;
double[] d_mins = new double[numDIntervals],
d_maxs = new double[numDIntervals];
if(LOG.isVerbose()) {
LOG.verbose(new StringBuilder().append("d_min ").append(d_min)//
.append("\nd_max ").append(d_max)//
.append("\nnumDIntervals ").append(numDIntervals)//
.append("\ndIntervalSize ").append(dIntervalSize).toString());
}
// alpha intervals
double[] alphaMin = new double[dim - 1], alphaMax = new double[dim - 1];
Arrays.fill(alphaMax, Math.PI);
for(int i = 0; i < numDIntervals; i++) {
d_mins[i] = (i == 0) ? d_min : d_maxs[i - 1];
d_maxs[i] = (i < numDIntervals - 1) ? d_mins[i] + dIntervalSize : d_max - d_mins[i];
HyperBoundingBox alphaInterval = new HyperBoundingBox(alphaMin, alphaMax);
ModifiableDBIDs intervalIDs = split.determineIDs(ids, alphaInterval, d_mins[i], d_maxs[i]);
if(intervalIDs != null && intervalIDs.size() >= minPts) {
CASHInterval rootInterval = new CASHInterval(alphaMin, alphaMax, split, intervalIDs, -1, 0, d_mins[i], d_maxs[i]);
heap.add(new IntegerPriorityObject<>(rootInterval.priority(), rootInterval));
}
}
if(LOG.isDebuggingFiner()) {
LOG.debugFiner(new StringBuilder().append("heap.size: ").append(heap.size()).toString());
}
}
示例9: NearestNeighborAffinityMatrixBuilder
import net.jafama.FastMath; //导入方法依赖的package包/类
/**
* Constructor.
*
* @param distanceFunction Distance function
* @param perplexity Desired perplexity (will use 3*perplexity neighbors)
*/
public NearestNeighborAffinityMatrixBuilder(DistanceFunction<? super O> distanceFunction, double perplexity) {
super(distanceFunction, perplexity);
this.numberOfNeighbours = (int) FastMath.ceil(3 * perplexity);
}