当前位置: 首页>>代码示例>>Java>>正文


Java AffineTransform.invert方法代码示例

本文整理汇总了Java中java.awt.geom.AffineTransform.invert方法的典型用法代码示例。如果您正苦于以下问题:Java AffineTransform.invert方法的具体用法?Java AffineTransform.invert怎么用?Java AffineTransform.invert使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在java.awt.geom.AffineTransform的用法示例。


在下文中一共展示了AffineTransform.invert方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: setTexturePaint

import java.awt.geom.AffineTransform; //导入方法依赖的package包/类
/**
 * We use OpenGL's texture coordinate generator to automatically
 * map the TexturePaint image to the geometry being rendered.  The
 * generator uses two separate plane equations that take the (x,y)
 * location (in device space) of the fragment being rendered to
 * calculate (u,v) texture coordinates for that fragment:
 *     u = Ax + By + Cz + Dw
 *     v = Ex + Fy + Gz + Hw
 *
 * Since we use a 2D orthographic projection, we can assume that z=0
 * and w=1 for any fragment.  So we need to calculate appropriate
 * values for the plane equation constants (A,B,D) and (E,F,H) such
 * that {u,v}=0 for the top-left of the TexturePaint's anchor
 * rectangle and {u,v}=1 for the bottom-right of the anchor rectangle.
 * We can easily make the texture image repeat for {u,v} values
 * outside the range [0,1] by specifying the GL_REPEAT texture wrap
 * mode.
 *
 * Calculating the plane equation constants is surprisingly simple.
 * We can think of it as an inverse matrix operation that takes
 * device space coordinates and transforms them into user space
 * coordinates that correspond to a location relative to the anchor
 * rectangle.  First, we translate and scale the current user space
 * transform by applying the anchor rectangle bounds.  We then take
 * the inverse of this affine transform.  The rows of the resulting
 * inverse matrix correlate nicely to the plane equation constants
 * we were seeking.
 */
private static void setTexturePaint(RenderQueue rq,
                                    SunGraphics2D sg2d,
                                    TexturePaint paint,
                                    boolean useMask)
{
    BufferedImage bi = paint.getImage();
    SurfaceData dstData = sg2d.surfaceData;
    SurfaceData srcData =
        dstData.getSourceSurfaceData(bi, SunGraphics2D.TRANSFORM_ISIDENT,
                                     CompositeType.SrcOver, null);
    boolean filter =
        (sg2d.interpolationType !=
         AffineTransformOp.TYPE_NEAREST_NEIGHBOR);

    // calculate plane equation constants
    AffineTransform at = (AffineTransform)sg2d.transform.clone();
    Rectangle2D anchor = paint.getAnchorRect();
    at.translate(anchor.getX(), anchor.getY());
    at.scale(anchor.getWidth(), anchor.getHeight());

    double xp0, xp1, xp3, yp0, yp1, yp3;
    try {
        at.invert();
        xp0 = at.getScaleX();
        xp1 = at.getShearX();
        xp3 = at.getTranslateX();
        yp0 = at.getShearY();
        yp1 = at.getScaleY();
        yp3 = at.getTranslateY();
    } catch (java.awt.geom.NoninvertibleTransformException e) {
        xp0 = xp1 = xp3 = yp0 = yp1 = yp3 = 0.0;
    }

    // assert rq.lock.isHeldByCurrentThread();
    rq.ensureCapacityAndAlignment(68, 12);
    RenderBuffer buf = rq.getBuffer();
    buf.putInt(SET_TEXTURE_PAINT);
    buf.putInt(useMask ? 1 : 0);
    buf.putInt(filter ? 1 : 0);
    buf.putLong(srcData.getNativeOps());
    buf.putDouble(xp0).putDouble(xp1).putDouble(xp3);
    buf.putDouble(yp0).putDouble(yp1).putDouble(yp3);
}
 
开发者ID:SunburstApps,项目名称:OpenJSharp,代码行数:72,代码来源:BufferedPaints.java

示例2: setRadialGradientPaint

import java.awt.geom.AffineTransform; //导入方法依赖的package包/类
/**
 * This method calculates six m** values and a focusX value that
 * are used by the native fragment shader.  These techniques are
 * based on a whitepaper by Daniel Rice on radial gradient performance
 * (attached to the bug report for 6521533).  One can refer to that
 * document for the complete set of formulas and calculations, but
 * the basic goal is to compose a transform that will convert an
 * (x,y) position in device space into a "u" value that represents
 * the relative distance to the gradient focus point.  The resulting
 * value can be used to look up the appropriate color by linearly
 * interpolating between the two nearest colors in the gradient.
 */
private static void setRadialGradientPaint(RenderQueue rq,
                                           SunGraphics2D sg2d,
                                           RadialGradientPaint paint,
                                           boolean useMask)
{
    boolean linear =
        (paint.getColorSpace() == ColorSpaceType.LINEAR_RGB);
    int cycleMethod = paint.getCycleMethod().ordinal();
    float[] fractions = paint.getFractions();
    Color[] colors = paint.getColors();
    int numStops = colors.length;
    int[] pixels = convertToIntArgbPrePixels(colors, linear);
    Point2D center = paint.getCenterPoint();
    Point2D focus = paint.getFocusPoint();
    float radius = paint.getRadius();

    // save original (untransformed) center and focus points
    double cx = center.getX();
    double cy = center.getY();
    double fx = focus.getX();
    double fy = focus.getY();

    // transform from gradient coords to device coords
    AffineTransform at = paint.getTransform();
    at.preConcatenate(sg2d.transform);
    focus = at.transform(focus, focus);

    // transform unit circle to gradient coords; we start with the
    // unit circle (center=(0,0), focus on positive x-axis, radius=1)
    // and then transform into gradient space
    at.translate(cx, cy);
    at.rotate(fx - cx, fy - cy);
    at.scale(radius, radius);

    // invert to get mapping from device coords to unit circle
    try {
        at.invert();
    } catch (Exception e) {
        at.setToScale(0.0, 0.0);
    }
    focus = at.transform(focus, focus);

    // clamp the focus point so that it does not rest on, or outside
    // of, the circumference of the gradient circle
    fx = Math.min(focus.getX(), 0.99);

    // assert rq.lock.isHeldByCurrentThread();
    rq.ensureCapacity(20 + 28 + (numStops*4*2));
    RenderBuffer buf = rq.getBuffer();
    buf.putInt(SET_RADIAL_GRADIENT_PAINT);
    buf.putInt(useMask ? 1 : 0);
    buf.putInt(linear  ? 1 : 0);
    buf.putInt(numStops);
    buf.putInt(cycleMethod);
    buf.putFloat((float)at.getScaleX());
    buf.putFloat((float)at.getShearX());
    buf.putFloat((float)at.getTranslateX());
    buf.putFloat((float)at.getShearY());
    buf.putFloat((float)at.getScaleY());
    buf.putFloat((float)at.getTranslateY());
    buf.putFloat((float)fx);
    buf.put(fractions);
    buf.put(pixels);
}
 
开发者ID:SunburstApps,项目名称:OpenJSharp,代码行数:77,代码来源:BufferedPaints.java


注:本文中的java.awt.geom.AffineTransform.invert方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。