本文整理汇总了Java中gnu.trove.list.array.TDoubleArrayList.toArray方法的典型用法代码示例。如果您正苦于以下问题:Java TDoubleArrayList.toArray方法的具体用法?Java TDoubleArrayList.toArray怎么用?Java TDoubleArrayList.toArray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gnu.trove.list.array.TDoubleArrayList
的用法示例。
在下文中一共展示了TDoubleArrayList.toArray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: computeCPFs
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private void computeCPFs ()
{
isFactorsAdded = true;
TDoubleArrayList residTmp = new TDoubleArrayList ();
for (Iterator it = cliques.iterator(); it.hasNext();) {
UnrolledVarSet clique = (UnrolledVarSet) it.next();
AbstractTableFactor ptl = clique.tmpl.computeFactor (clique);
addFactorInternal (clique, ptl);
clique.tmpl.modifyPotential (this, clique, ptl);
uvsMap.put (ptl, clique);
// sigh
LogTableFactor unif = new LogTableFactor (clique);
residTmp.add (Factors.distLinf (unif, ptl));
}
lastResids = residTmp.toArray();
}
示例2: readSparseVector
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private SparseVector readSparseVector (String str, Alphabet dict) throws IOException
{
TIntArrayList idxs = new TIntArrayList ();
TDoubleArrayList vals = new TDoubleArrayList ();
String[] lines = str.split ("\n");
for (int li = 0; li < lines.length; li++) {
String line = lines[li];
if (Pattern.matches ("^\\s*$", line)) continue;
String[] fields = line.split ("\t");
int idx;
if (dict != null) {
idx = dict.lookupIndex (fields[0]);
} else {
idx = Integer.parseInt (fields[0]);
}
double val = Double.parseDouble (fields[1]);
idxs.add (idx);
vals.add (val);
}
return new SparseVector (idxs.toArray(), vals.toArray());
}
示例3: testSample
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
{
Variable var = new Variable (Variable.CONTINUOUS);
Randoms r = new Randoms (2343);
Factor f = new UniNormalFactor (var, -1.0, 2.0);
TDoubleArrayList lst = new TDoubleArrayList();
for (int i = 0; i < 10000; i++) {
Assignment assn = f.sample (r);
lst.add (assn.getDouble (var));
}
double[] vals = lst.toArray ();
double mean = MatrixOps.mean (vals);
double std = MatrixOps.stddev (vals);
assertEquals (-1.0, mean, 0.025);
assertEquals (Math.sqrt(2.0), std, 0.01);
}
示例4: make3dMatrix
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private SparseMatrixn make3dMatrix ()
{
int[] sizes = new int[]{2, 3, 4};
TIntArrayList idxs = new TIntArrayList ();
TDoubleArrayList vals = new TDoubleArrayList ();
for (int i = 0; i < 24; i++) {
if (i % 3 != 0) {
idxs.add (i);
vals.add (2.0 * i);
}
}
SparseMatrixn a = new SparseMatrixn (sizes, idxs.toArray (), vals.toArray ());
return a;
}
示例5: calculateLScores
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private double[][] calculateLScores(DensityManager dm)
{
TDoubleArrayList x = new TDoubleArrayList();
TDoubleArrayList y = new TDoubleArrayList();
x.add(0.0);
y.add(0.0);
for (double r = minR; r < maxR; r += incrementR)
{
double l = dm.ripleysLFunction(r);
x.add(r);
double score = (r > 0) ? (l - r) / r : 0;
y.add(score);
}
double[][] values = new double[2][];
values[0] = x.toArray();
values[1] = y.toArray();
return values;
}
示例6: SparseMatrixData
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
/**
* Copies the data from the given matrix to a new instance of this class.
*/
public SparseMatrixData(HashMatrix matrix) {
final TIntArrayList rowList = new TIntArrayList();
final TIntArrayList colList = new TIntArrayList();
final TDoubleArrayList valList = new TDoubleArrayList();
matrix.iterate(new MatrixIterator() {
@Override
public void next(int row, int col, double val) {
rowList.add(row);
colList.add(col);
valList.add(val);
}
});
this.numberOfEntries = rowList.size();
this.rows = matrix.rows();
this.columns = matrix.columns();
this.rowIndices = rowList.toArray();
this.columnIndices = colList.toArray();
this.values = valList.toArray();
}
示例7: retainMass
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public static TableFactor retainMass (DiscreteFactor ptl, double alpha)
{
int[] idxs = new int [ptl.numLocations ()];
double[] vals = new double [ptl.numLocations ()];
for (int i = 0; i < idxs.length; i++) {
idxs[i] = ptl.indexAtLocation (i);
vals[i] = ptl.logValue (i);
}
RankedFeatureVector rfv = new RankedFeatureVector (new Alphabet(), idxs, vals);
TIntArrayList idxList = new TIntArrayList ();
TDoubleArrayList valList = new TDoubleArrayList ();
double mass = Double.NEGATIVE_INFINITY;
double logAlpha = Math.log (alpha);
for (int rank = 0; rank < rfv.numLocations (); rank++) {
int idx = rfv.getIndexAtRank (rank);
double val = rfv.value (idx);
mass = Maths.sumLogProb (mass, val);
idxList.add (idx);
valList.add (val);
if (mass > logAlpha) {
break;
}
}
int[] szs = computeSizes (ptl);
SparseMatrixn m = new SparseMatrixn (szs, idxList.toArray (), valList.toArray ());
TableFactor result = new TableFactor (computeVars (ptl));
result.setValues (m);
return result;
}
示例8: checkMeanStd
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
void checkMeanStd (TDoubleArrayList ell, double mu, double sigma)
{
double[] vals = ell.toArray ();
double mean1 = MatrixOps.mean (vals);
double std1 = MatrixOps.stddev (vals);
assertEquals (mu, mean1, 0.025);
assertEquals (sigma, std1, 0.01);
}
示例9: testSample
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
{
Variable var = new Variable (Variable.CONTINUOUS);
Randoms r = new Randoms (2343);
Factor f = new BetaFactor (var, 0.7, 0.5);
TDoubleArrayList lst = new TDoubleArrayList ();
for (int i = 0; i < 100000; i++) {
Assignment assn = f.sample (r);
lst.add (assn.getDouble (var));
}
double[] vals = lst.toArray ();
double mean = MatrixOps.mean (vals);
assertEquals (0.7 / (0.5 + 0.7), mean, 0.01);
}
示例10: testSample2
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample2 ()
{
Variable var = new Variable (Variable.CONTINUOUS);
Randoms r = new Randoms (2343);
Factor f = new BetaFactor (var, 0.7, 0.5, 3.0, 8.0);
TDoubleArrayList lst = new TDoubleArrayList ();
for (int i = 0; i < 100000; i++) {
Assignment assn = f.sample (r);
lst.add (assn.getDouble (var));
}
double[] vals = lst.toArray ();
double mean = MatrixOps.mean (vals);
assertEquals (5.92, mean, 0.01);
}
示例11: testSample
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
{
Variable var = new Variable (Variable.CONTINUOUS);
Randoms r = new Randoms (2343);
Factor f = new UniformFactor (var, -1.0, 1.5);
TDoubleArrayList lst = new TDoubleArrayList ();
for (int i = 0; i < 10000; i++) {
Assignment assn = f.sample (r);
lst.add (assn.getDouble (var));
}
double[] vals = lst.toArray ();
double mean = MatrixOps.mean (vals);
assertEquals (0.25, mean, 0.01);
}
示例12: train
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
@Override
public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) {
final TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
final TObjectIntHashMap<ANNOTATION> annotationCounts = new TObjectIntHashMap<ANNOTATION>();
int maxVal = 0;
for (final Annotated<OBJECT, ANNOTATION> sample : data) {
final Collection<ANNOTATION> annos = sample.getAnnotations();
for (final ANNOTATION s : annos) {
annotationCounts.adjustOrPutValue(s, 1, 1);
}
nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);
if (annos.size() > maxVal)
maxVal = annos.size();
}
// build distribution and rng for each annotation
annotations = new ArrayList<ANNOTATION>();
final TDoubleArrayList probs = new TDoubleArrayList();
annotationCounts.forEachEntry(new TObjectIntProcedure<ANNOTATION>() {
@Override
public boolean execute(ANNOTATION a, int b) {
annotations.add(a);
probs.add(b);
return true;
}
});
annotationProbability = new EmpiricalWalker(probs.toArray(), Empirical.NO_INTERPOLATION, new MersenneTwister());
numAnnotations.train(data);
}
示例13: retainLogicalAnd
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
/**
* Returns an array of values that test true for all of the
* specified {@link Condition}s.
*
* @param values
* @param conditions
* @return
*/
public static double[] retainLogicalAnd(double[] values, Condition<?>[] conditions) {
TDoubleArrayList l = new TDoubleArrayList();
for (int i = 0; i < values.length; i++) {
boolean result = true;
for (int j = 0; j < conditions.length && result; j++) {
result &= conditions[j].eval(values[i]);
}
if (result) l.add(values[i]);
}
return l.toArray();
}
示例14: Position
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public Position(Portfolio portfolio, String assetName, TDoubleArrayList price, TIntArrayList quantity, TLongArrayList timeMillSec) {
this( portfolio, assetName, price.toArray(), quantity.toArray(), timeMillSec.toArray());
}
示例15: showFrcTimeEvolution
import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private void showFrcTimeEvolution(String name, double fireNumber, ThresholdMethod thresholdMethod,
double fourierImageScale, int imageSize)
{
IJ.showStatus("Calculating FRC time evolution curve...");
// Sort by time
results.sort();
int nSteps = 10;
int maxT = results.getLastFrame();
if (maxT == 0)
maxT = results.size();
int step = maxT / nSteps;
TDoubleArrayList x = new TDoubleArrayList();
TDoubleArrayList y = new TDoubleArrayList();
double yMin = fireNumber;
double yMax = fireNumber;
MemoryPeakResults newResults = new MemoryPeakResults();
newResults.copySettings(results);
int i = 0;
PeakResult[] list = results.toArray();
for (int t = step; t <= maxT - step; t += step)
{
while (i < list.length)
{
PeakResult r = list[i];
if (r.getFrame() <= t)
{
newResults.add(r);
i++;
}
else
break;
}
x.add((double) t);
FIRE f = this.copy();
FireResult result = f.calculateFireNumber(fourierMethod, samplingMethod, thresholdMethod, fourierImageScale,
imageSize);
double fire = (result == null) ? 0 : result.fireNumber;
y.add(fire);
yMin = FastMath.min(yMin, fire);
yMax = FastMath.max(yMax, fire);
}
// Add the final fire number
x.add((double) maxT);
y.add(fireNumber);
double[] xValues = x.toArray();
double[] yValues = y.toArray();
String units = "px";
if (results.getCalibration() != null)
{
nmPerUnit = results.getNmPerPixel();
units = "nm";
}
String title = name + " FRC Time Evolution";
Plot2 plot = new Plot2(title, "Frames", "Resolution (" + units + ")", (float[]) null, (float[]) null);
double range = Math.max(1, yMax - yMin) * 0.05;
plot.setLimits(xValues[0], xValues[xValues.length - 1], yMin - range, yMax + range);
plot.setColor(Color.red);
plot.addPoints(xValues, yValues, Plot.CONNECTED_CIRCLES);
Utils.display(title, plot);
}