当前位置: 首页>>代码示例>>Java>>正文


Java TDoubleArrayList.add方法代码示例

本文整理汇总了Java中gnu.trove.list.array.TDoubleArrayList.add方法的典型用法代码示例。如果您正苦于以下问题:Java TDoubleArrayList.add方法的具体用法?Java TDoubleArrayList.add怎么用?Java TDoubleArrayList.add使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gnu.trove.list.array.TDoubleArrayList的用法示例。


在下文中一共展示了TDoubleArrayList.add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: parseToken

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
void parseToken(int i, String token) {
    if (dataTypes[i - 2] == null) {
        // test double parsing, in case of error we consider it a string time series
        if (Doubles.tryParse(token) != null) {
            dataTypes[i - 2] = TimeSeriesDataType.DOUBLE;
            TDoubleArrayList doubleValues = createDoubleValues();
            doubleValues.add(parseDouble(token));
            values[i - 2] = doubleValues;
        } else {
            dataTypes[i - 2] = TimeSeriesDataType.STRING;
            List<String> stringValues = createStringValues();
            stringValues.add(checkString(token));
            values[i - 2] = stringValues;
        }
    } else {
        if (dataTypes[i - 2] == TimeSeriesDataType.DOUBLE) {
            ((TDoubleArrayList) values[i - 2]).add(parseDouble(token));
        } else if (dataTypes[i - 2] == TimeSeriesDataType.STRING) {
            ((List<String>) values[i - 2]).add(checkString(token));
        } else {
            throw assertDataType(dataTypes[i - 2]);
        }
    }
}
 
开发者ID:powsybl,项目名称:powsybl-core,代码行数:25,代码来源:TimeSeries.java

示例2: computeCPFs

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private void computeCPFs ()
{
  isFactorsAdded = true;
  TDoubleArrayList residTmp = new TDoubleArrayList ();
  for (Iterator it = cliques.iterator(); it.hasNext();) {
    UnrolledVarSet clique = (UnrolledVarSet) it.next();
    AbstractTableFactor ptl = clique.tmpl.computeFactor (clique);
    addFactorInternal (clique, ptl);
    clique.tmpl.modifyPotential (this, clique, ptl);
    uvsMap.put (ptl, clique);
    
    // sigh
    LogTableFactor unif = new LogTableFactor (clique);
    residTmp.add (Factors.distLinf (unif, ptl));
  }

  lastResids = residTmp.toArray();
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:19,代码来源:ACRF.java

示例3: readSparseVector

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private SparseVector readSparseVector (String str, Alphabet dict) throws IOException
{
  TIntArrayList idxs = new TIntArrayList ();
  TDoubleArrayList vals = new TDoubleArrayList ();
  String[] lines = str.split ("\n");
  for (int li = 0; li < lines.length; li++) {
    String line = lines[li];
    if (Pattern.matches ("^\\s*$", line)) continue;

    String[] fields = line.split ("\t");
    int idx;
    if (dict != null) {
      idx = dict.lookupIndex (fields[0]);
    } else {
      idx = Integer.parseInt (fields[0]);
    }

    double val = Double.parseDouble (fields[1]);
    idxs.add (idx);
    vals.add (val);
  }
  return new SparseVector (idxs.toArray(), vals.toArray());
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:24,代码来源:ACRF.java

示例4: testSample

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
  {
    Variable v1 = new Variable (Variable.CONTINUOUS);
    Variable v2 = new Variable (Variable.CONTINUOUS);
    Randoms r = new Randoms (2343);

    Vector mu = new DenseVector (new double[] { 1.0, 2.0 });
    Matrix var = new DenseMatrix (new double[][] {{ 0.5, 2.0 }, { 0, 1 }});
//    Matrix var = new DenseMatrix (new double[][] {{ 0.5, 2.0 }, { 2.0, 0.75 }});

    VarSet vars = new HashVarSet (new Variable[] { v1, v2 });
    Factor f = new NormalFactor (vars, mu, var);

    TDoubleArrayList v1lst = new TDoubleArrayList();
    TDoubleArrayList v2lst = new TDoubleArrayList ();
    for (int i = 0; i < 100000; i++) {
      Assignment assn = f.sample (r);
      v1lst.add (assn.getDouble (v1));
      v2lst.add (assn.getDouble (v2));
    }

    checkMeanStd (v1lst, 1.0, Math.sqrt (1/0.5));
    checkMeanStd (v2lst, 2.0, Math.sqrt (1/0.75));
  }
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:25,代码来源:TestNormalFactor.java

示例5: testSample

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
{
  Variable var = new Variable (Variable.CONTINUOUS);
  Randoms r = new Randoms (2343);
  Factor f = new UniNormalFactor (var, -1.0, 2.0);
  TDoubleArrayList lst = new TDoubleArrayList();
  for (int i = 0; i < 10000; i++) {
    Assignment assn = f.sample (r);
    lst.add (assn.getDouble (var));
  }

  double[] vals = lst.toArray ();
  double mean = MatrixOps.mean (vals);
  double std = MatrixOps.stddev (vals);
  assertEquals (-1.0, mean, 0.025);
  assertEquals (Math.sqrt(2.0), std, 0.01);
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:18,代码来源:TestUniNormalFactor.java

示例6: createDirectedModel

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private DirectedModel createDirectedModel ()
{
  int NUM_OUTCOMES = 2;
  cc.mallet.util.Randoms random = new cc.mallet.util.Randoms (13413);

  Dirichlet dirichlet = new Dirichlet (NUM_OUTCOMES, 1.0);
  double[] pA = dirichlet.randomVector (random);
  double[] pB = dirichlet.randomVector (random);

  TDoubleArrayList pC = new TDoubleArrayList (NUM_OUTCOMES * NUM_OUTCOMES * NUM_OUTCOMES);
  for (int i = 0; i < (NUM_OUTCOMES * NUM_OUTCOMES); i++) {
    pC.add (dirichlet.randomVector (random));
  }

  Variable[] vars = new Variable[] { new Variable (NUM_OUTCOMES), new Variable (NUM_OUTCOMES),
          new Variable (NUM_OUTCOMES) };
  DirectedModel mdl = new DirectedModel ();
  mdl.addFactor (new CPT (new TableFactor (vars[0], pA), vars[0]));
  mdl.addFactor (new CPT (new TableFactor (vars[1], pB), vars[1]));
  mdl.addFactor (new CPT (new TableFactor (vars, pC.toArray ()), vars[2]));

  return mdl;
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:24,代码来源:TestInference.java

示例7: make3dMatrix

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private SparseMatrixn make3dMatrix ()
{
  int[] sizes = new int[]{2, 3, 4};
  TIntArrayList idxs = new TIntArrayList ();
  TDoubleArrayList vals = new TDoubleArrayList ();

  for (int i = 0; i < 24; i++) {
    if (i % 3 != 0) {
      idxs.add (i);
      vals.add (2.0 * i);
    }
  }

  SparseMatrixn a = new SparseMatrixn (sizes, idxs.toArray (), vals.toArray ());
  return a;
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:17,代码来源:TestSparseMatrixn.java

示例8: recomputeBias

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void recomputeBias(double[][] datai, double[][] dataj, boolean[] same) {
	final TDoubleArrayList posDistances = new TDoubleArrayList();
	final TDoubleArrayList negDistances = new TDoubleArrayList();
	for (int i = 0; i < datai.length; i++) {
		final Matrix diff = diff(datai[i], dataj[i]);
		final Matrix diffProj = W.times(diff);
		final double dist = sumsq(diffProj);

		if (same[i]) {
			posDistances.add(dist);
		} else {
			negDistances.add(dist);
		}
	}

	b = computeOptimal(posDistances, negDistances);
}
 
开发者ID:openimaj,项目名称:openimaj,代码行数:18,代码来源:LargeMarginDimensionalityReduction.java

示例9: updateInhibitionRadius

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
/**
 * Update the inhibition radius. The inhibition radius is a measure of the
 * square (or hypersquare) of columns that each a column is "connected to"
 * on average. Since columns are are not connected to each other directly, we
 * determine this quantity by first figuring out how many *inputs* a column is
 * connected to, and then multiplying it by the total number of columns that
 * exist for each input. For multiple dimension the aforementioned
 * calculations are averaged over all dimensions of inputs and columns. This
 * value is meaningless if global inhibition is enabled.
 * 
 * @param c     the {@link Connections} (spatial pooler memory)
 */
public void updateInhibitionRadius(Connections c) {
    if(c.getGlobalInhibition()) {
        c.setInhibitionRadius(ArrayUtils.max(c.getColumnDimensions()));
        return;
    }

    TDoubleArrayList avgCollected = new TDoubleArrayList();
    int len = c.getNumColumns();
    for(int i = 0;i < len;i++) {
        avgCollected.add(avgConnectedSpanForColumnND(c, i));
    }
    double avgConnectedSpan = ArrayUtils.average(avgCollected.toArray());
    double diameter = avgConnectedSpan * avgColumnsPerInput(c);
    double radius = (diameter - 1) / 2.0d;
    radius = Math.max(1, radius);
    c.setInhibitionRadius((int)(radius + 0.5));
}
 
开发者ID:numenta,项目名称:htm.java,代码行数:30,代码来源:SpatialPooler.java

示例10: calculateLScores

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
private double[][] calculateLScores(DensityManager dm)
{
	TDoubleArrayList x = new TDoubleArrayList();
	TDoubleArrayList y = new TDoubleArrayList();
	x.add(0.0);
	y.add(0.0);

	for (double r = minR; r < maxR; r += incrementR)
	{
		double l = dm.ripleysLFunction(r);
		x.add(r);
		double score = (r > 0) ? (l - r) / r : 0;
		y.add(score);
	}

	double[][] values = new double[2][];
	values[0] = x.toArray();
	values[1] = y.toArray();
	return values;
}
 
开发者ID:aherbert,项目名称:GDSC-SMLM,代码行数:21,代码来源:DensityImage.java

示例11: findCutPoint

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public TreeNode findCutPoint() {
	List<TreeNode> _children = new ArrayList<TreeNode>();
	TDoubleArrayList scores = new TDoubleArrayList();
	Queue<TreeNode> q = new ArrayDeque<TreeNode>();
	q.add(this);
	while (!q.isEmpty()) {
		TreeNode c = q.poll();
		q.addAll(c.children);
		TreeNode p = c.getParent();
		if (p == null) {
			continue;
		}
		double aboveSize = fragment_size - c.size;
		if (aboveSize >= 3d || c.size >= 3d) {
			_children.add(c);
			scores.add(c.d / Math.min(aboveSize, c.size));
		}
	}
	TreeNode minc = null;
	double minScore = Double.MAX_VALUE;
	for (int i = 0; i < scores.size(); i++) {
		if (scores.get(i) < minScore) {
			minScore = scores.get(i);
			minc = _children.get(i);
		}
	}
	return minc;
}
 
开发者ID:artem-lysenko,项目名称:modularity,代码行数:29,代码来源:Dcut.java

示例12: _findCutPoint

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public TreeNode _findCutPoint() {
	List<TreeNode> _children = new ArrayList<TreeNode>();
	TDoubleArrayList scores = new TDoubleArrayList();
	Queue<TreeNode> q = new ArrayDeque<TreeNode>();
	q.add(this);
	while (!q.isEmpty()) {
		TreeNode c = q.poll();
		q.addAll(c.children);
		TreeNode p = c.getParent();
		if (p == null) {
			continue;
		}
		double aboveSize = fragment_size - c.size;
		if (aboveSize >= minModuleSize || c.size >= minModuleSize) {
			_children.add(c);
			scores.add(c.d / Math.max(aboveSize, c.size));
		}
	}
	TreeNode maxc = null;
	double maxScore = Double.MIN_VALUE;
	for (int i = 0; i < scores.size(); i++) {
		if (scores.get(i) > maxScore) {
			maxScore = scores.get(i);
			maxc = _children.get(i);
		}
	}
	return maxc;
}
 
开发者ID:artem-lysenko,项目名称:modularity,代码行数:29,代码来源:Dcut.java

示例13: calculateNDCG

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
/**
 * Calculate NDCG.
 * blatantly refactored from galago
 */
public static double calculateNDCG(List<ScoredDate> rankedDates, Set<Integer> relYears) {
  if(relYears.isEmpty()) return 0.0;

  // parameters
  final double IdealScore = 1.0;
  int numRetrieved = rankedDates.size();

  // compute dcg:
  TDoubleArrayList actualGain = new TDoubleArrayList(numRetrieved);
  for (ScoredDate doc : rankedDates) {
    double value = 0.0;
    if(relYears.contains(doc.year)) { value = IdealScore; }
    actualGain.add(value);
  }
  double dcg = computeDCG(actualGain, numRetrieved);

  TDoubleArrayList idealGain = new TDoubleArrayList(numRetrieved);
  for(int i=0; i<relYears.size(); i++) {
    idealGain.add(IdealScore);
  }
  // put the best ones at the beginning
  idealGain.sort(); idealGain.reverse();

  double max = computeDCG(idealGain, numRetrieved);
  return dcg / max;
}
 
开发者ID:jjfiv,项目名称:ecir2015timebooks,代码行数:31,代码来源:EvaluateRun.java

示例14: retainMass

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public static TableFactor retainMass (DiscreteFactor ptl, double alpha)
{
  int[] idxs = new int [ptl.numLocations ()];
  double[] vals = new double [ptl.numLocations ()];
  for (int i = 0; i < idxs.length; i++) {
    idxs[i] = ptl.indexAtLocation (i);
    vals[i] = ptl.logValue (i);
  }

  RankedFeatureVector rfv = new RankedFeatureVector (new Alphabet(), idxs, vals);
  TIntArrayList idxList = new TIntArrayList ();
  TDoubleArrayList valList = new TDoubleArrayList ();

  double mass = Double.NEGATIVE_INFINITY;
  double logAlpha = Math.log (alpha);
  for (int rank = 0; rank < rfv.numLocations (); rank++) {
    int idx = rfv.getIndexAtRank (rank);
    double val = rfv.value (idx);
    mass = Maths.sumLogProb (mass, val);
    idxList.add (idx);
    valList.add (val);
    if (mass > logAlpha) {
      break;
    }
  }

  int[] szs = computeSizes (ptl);
  SparseMatrixn m = new SparseMatrixn (szs, idxList.toArray (), valList.toArray ());

  TableFactor result = new TableFactor (computeVars (ptl));
  result.setValues (m);

  return result;
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:35,代码来源:Factors.java

示例15: testSample

import gnu.trove.list.array.TDoubleArrayList; //导入方法依赖的package包/类
public void testSample ()
{
  Variable var = new Variable (Variable.CONTINUOUS);
  Randoms r = new Randoms (2343);
  Factor f = new BetaFactor (var, 0.7, 0.5);
  TDoubleArrayList lst = new TDoubleArrayList ();
  for (int i = 0; i < 100000; i++) {
    Assignment assn = f.sample (r);
    lst.add (assn.getDouble (var));
  }

  double[] vals = lst.toArray ();
  double mean = MatrixOps.mean (vals);
  assertEquals (0.7 / (0.5 + 0.7), mean, 0.01);
}
 
开发者ID:iamxiatian,项目名称:wikit,代码行数:16,代码来源:TestBetaFactor.java


注:本文中的gnu.trove.list.array.TDoubleArrayList.add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。