当前位置: 首页>>代码示例>>Java>>正文


Java Counter.keySet方法代码示例

本文整理汇总了Java中edu.berkeley.nlp.util.Counter.keySet方法的典型用法代码示例。如果您正苦于以下问题:Java Counter.keySet方法的具体用法?Java Counter.keySet怎么用?Java Counter.keySet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在edu.berkeley.nlp.util.Counter的用法示例。


在下文中一共展示了Counter.keySet方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: initPunctuations

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
private void initPunctuations(StateSetTreeList trainTrees) {
	punctuationSignatures = new Indexer<String>();
	isPunctuation = new boolean[nWords];
	Counter<String> punctSigCounter = new Counter<String>();
	for (int word = 0; word < nWords; word++) {
		isPunctuation[word] = isPunctuation(wordIndexer.get(word));
	}
	for (Tree<StateSet> tree : trainTrees) {
		getPunctuationSignatures(tree.getYield(), true, punctSigCounter);
	}

	Indexer<String> newPunctuationSignatures = new Indexer<String>();
	for (String sig : punctSigCounter.keySet()) {
		if (punctSigCounter.getCount(sig) >= minFeatureFrequency)
			newPunctuationSignatures.add(sig);
	}
	punctuationSignatures = newPunctuationSignatures;
	punctuationScores = new double[punctuationSignatures.size()][nClasses];
	ArrayUtil.fill(punctuationScores, 1);
	nFeatures += nClasses * punctuationScores.length;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:22,代码来源:SpanPredictor.java

示例2: trainClassifier

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
public ProbabilisticClassifier<I, L> trainClassifier(
		List<LabeledInstance<I, L>> trainingData) {
	CounterMap<L, F> featureProbs = new CounterMap<L, F>();
	Counter<F> backoffProbs = new Counter<F>();
	Counter<L> labelProbs = new Counter<L>();
	for (LabeledInstance<I, L> instance : trainingData) {
		L label = instance.getLabel();
		labelProbs.incrementCount(label, 1.0);
		I inst = instance.getInput();
		Counter<F> featCounts = featureExtractor.extractFeatures(inst);
		for (F feat : featCounts.keySet()) {
			double count = featCounts.getCount(feat);
			backoffProbs.incrementCount(feat, count);
			featureProbs.incrementCount(label, feat, count);
		}
	}
	featureProbs.normalize();
	labelProbs.normalize();
	backoffProbs.normalize();
	return new NaiveBayesClassifier<I, F, L>(featureProbs,
			backoffProbs, labelProbs, featureExtractor);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:23,代码来源:NaiveBayesClassifier.java

示例3: calculate

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
@Override
protected Pair<Double, double[]> calculate(double[] x) {
	weights = x;

	double objective = 0.0;
	double[] gradient = new double[dimension()];

	for (Pair<I, Double> datum : trainingData) {
		I input = datum.getFirst();
		Counter<Feature> featCounts = getFeatures(input);
		double guessResponse = getScore(featCounts);
		double goldResponse = datum.getSecond();
		double diff = (guessResponse - goldResponse);
		objective += 0.5 * diff * diff;
		for (Feature feat : featCounts.keySet()) {
			double count = featCounts.getCount(feat);
			gradient[feat.getIndex()] += count * diff;
		}
	}

	// TODO Auto-generated method stub
	return Pair.newPair(objective, gradient);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:24,代码来源:LinearRegression.java

示例4: dotProduct

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
private double dotProduct(Counter<F> features, int labelIndex, double[] w) {
	double val = 0.0;
	for (F feature : features.keySet()) {
		if (encoding.hasFeature(feature)) {
			int featureIndex = encoding.getFeatureIndex(feature);
			int linearIndex = il.getLinearIndex(featureIndex, labelIndex);
			val += features.getCount(feature) * w[linearIndex];
		}
	}
	return val;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:12,代码来源:ScoreCalculator.java

示例5: getFeatures

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
private Counter<Feature> getFeatures(I input) {
	Counter<String> strCounts = featureExtractor.extractFeatures(input);
	Counter<Feature> featCounts = new Counter<Feature>();
	for (String f : strCounts.keySet()) {
		double count = strCounts.getCount(f);
		Feature feat = featureManager.getFeature(f);
		featCounts.setCount(feat, count);
	}
	return featCounts;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:11,代码来源:LinearRegression.java

示例6: getScore

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
private double getScore(Counter<Feature> featureCounts) {
	double score = 0.0;
	for (Feature feat : featureCounts.keySet()) {
		double count = featureCounts.getCount(feat);
		score += count * weights[feat.getIndex()];
	}
	return score;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:9,代码来源:LinearRegression.java

示例7: extractAllFeatures

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
private void extractAllFeatures() {
	for (Pair<I, Double> datum : trainingData) {
		Counter<String> counts = featureExtractor.extractFeatures(datum
				.getFirst());
		for (String f : counts.keySet()) {
			featureManager.getFeature(f);
		}
	}
	featureManager.lock();
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:11,代码来源:LinearRegression.java

示例8: getResponse

import edu.berkeley.nlp.util.Counter; //导入方法依赖的package包/类
public double getResponse(I input) {
	Counter<String> featCounts = featureExtractor.extractFeatures(input);
	double score = 0.0;
	for (String f : featCounts.keySet()) {
		double count = featCounts.getCount(f);
		Feature feat = featureManager.getFeature(f);
		score += count * weights[feat.getIndex()];
	}
	return score;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:11,代码来源:LinearRegression.java


注:本文中的edu.berkeley.nlp.util.Counter.keySet方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。