当前位置: 首页>>代码示例>>Java>>正文


Java Counter类代码示例

本文整理汇总了Java中edu.berkeley.nlp.util.Counter的典型用法代码示例。如果您正苦于以下问题:Java Counter类的具体用法?Java Counter怎么用?Java Counter使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Counter类属于edu.berkeley.nlp.util包,在下文中一共展示了Counter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getLinearScoreMatrix

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public double[][] getLinearScoreMatrix(InstanceSequence<V, E, L> sequence,
		int index, double[] w) {
	int numLabels = encoding.getNumLabels();
	double[][] M = new double[numLabels][numLabels];
	Counter<F> vertexFeatures = vertexExtractor.extractFeatures(sequence
			.getVertexInstance(index));
	for (int vc = 0; vc < numLabels; vc++) {
		double vertexScore = dotProduct(vertexFeatures, vc, w);
		for (int vp = 0; vp < numLabels; vp++) {
			L previousLabel = encoding.getLabel(vp);
			Counter<F> edgeFeatures = edgeExtractor
					.extractFeatures(sequence.getEdgeInstance(index,
							previousLabel));
			double edgeScore = dotProduct(edgeFeatures, vc, w);
			M[vp][vc] = vertexScore + edgeScore;
		}
	}
	return M;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:20,代码来源:ScoreCalculator.java

示例2: getEmpiricalCounts

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public List<Counter<F>> getEmpiricalCounts(
		List<? extends LabeledInstanceSequence<V, E, L>> sequences) {
	int numLabels = encoding.getNumLabels();
	List<Counter<F>> counts = new ArrayList<Counter<F>>(numLabels);
	for (int l = 0; l < numLabels; l++) {
		counts.add(new Counter<F>());
	}
	for (LabeledInstanceSequence<V, E, L> s : sequences) {
		for (int i = 0; i < s.getSequenceLength(); i++) {
			Counter<F> vertexFeatures = vertexExtractor.extractFeatures(s
					.getVertexInstance(i));
			int goldLabelIndex = encoding.getLabelIndex(s.getGoldLabel(i));
			counts.get(goldLabelIndex).incrementAll(vertexFeatures);
			if (i > 0) {
				Counter<F> edgeFeatures = edgeExtractor.extractFeatures(s
						.getEdgeInstance(i, s.getGoldLabel(i - 1)));
				counts.get(goldLabelIndex).incrementAll(edgeFeatures);
			}
		}
	}
	return counts;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:23,代码来源:Counts.java

示例3: relax

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
private void relax(Counter<Edge<V>> pathCosts,
		Map<Edge<V>, V> intermediateStates,
		Map<V, List<Edge<V>>> closedUnaryRulesByChild,
		Map<V, List<Edge<V>>> closedUnaryRulesByParent, Edge<V> unaryRule,
		V intermediateState, double newScore) {
	if (intermediateState != null
			&& (intermediateState.equals(unaryRule.getParent()) || intermediateState
					.equals(unaryRule.getChild())))
		return;
	boolean isNewRule = !pathCosts.containsKey(unaryRule);
	double oldScore = (isNewRule ? Double.NEGATIVE_INFINITY : pathCosts
			.getCount(unaryRule));
	if (oldScore > newScore)
		return;
	if (isNewRule) {
		CollectionUtils.addToValueList(closedUnaryRulesByChild,
				unaryRule.getChild(), unaryRule);
		CollectionUtils.addToValueList(closedUnaryRulesByParent,
				unaryRule.getParent(), unaryRule);
	}
	pathCosts.setCount(unaryRule, newScore);
	intermediateStates.put(unaryRule, intermediateState);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:24,代码来源:UnaryClosureComputer.java

示例4: initPunctuations

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
private void initPunctuations(StateSetTreeList trainTrees) {
	punctuationSignatures = new Indexer<String>();
	isPunctuation = new boolean[nWords];
	Counter<String> punctSigCounter = new Counter<String>();
	for (int word = 0; word < nWords; word++) {
		isPunctuation[word] = isPunctuation(wordIndexer.get(word));
	}
	for (Tree<StateSet> tree : trainTrees) {
		getPunctuationSignatures(tree.getYield(), true, punctSigCounter);
	}

	Indexer<String> newPunctuationSignatures = new Indexer<String>();
	for (String sig : punctSigCounter.keySet()) {
		if (punctSigCounter.getCount(sig) >= minFeatureFrequency)
			newPunctuationSignatures.add(sig);
	}
	punctuationSignatures = newPunctuationSignatures;
	punctuationScores = new double[punctuationSignatures.size()][nClasses];
	ArrayUtil.fill(punctuationScores, 1);
	nFeatures += nClasses * punctuationScores.length;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:22,代码来源:SpanPredictor.java

示例5: countRuleParents

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public void countRuleParents() {
	for (Tree<StateSet> tree : trees) {
		addParent(tree);
	}
	for (BinaryRule br : binaryRuleCounter.keySet()) {
		contexts[br.parentState]++;
		contexts[br.leftChildState]++;
		contexts[br.rightChildState]++;
	}
	for (UnaryRule ur : unaryRuleCounter.keySet()) {
		contexts[ur.parentState]++;
		contexts[ur.childState]++;
	}
	for (int i = 0; i < contexts.length; i++) {
		Counter<String> tempC = posCounter.getCounter(i);
		contexts[i] += tempC.size();

	}
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:20,代码来源:CorpusStatistics.java

示例6: trainClassifier

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public ProbabilisticClassifier<I, L> trainClassifier(
		List<LabeledInstance<I, L>> trainingData) {
	CounterMap<L, F> featureProbs = new CounterMap<L, F>();
	Counter<F> backoffProbs = new Counter<F>();
	Counter<L> labelProbs = new Counter<L>();
	for (LabeledInstance<I, L> instance : trainingData) {
		L label = instance.getLabel();
		labelProbs.incrementCount(label, 1.0);
		I inst = instance.getInput();
		Counter<F> featCounts = featureExtractor.extractFeatures(inst);
		for (F feat : featCounts.keySet()) {
			double count = featCounts.getCount(feat);
			backoffProbs.incrementCount(feat, count);
			featureProbs.incrementCount(label, feat, count);
		}
	}
	featureProbs.normalize();
	labelProbs.normalize();
	backoffProbs.normalize();
	return new NaiveBayesClassifier<I, F, L>(featureProbs,
			backoffProbs, labelProbs, featureExtractor);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:23,代码来源:NaiveBayesClassifier.java

示例7: buildEncoding

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
private Encoding<F, L> buildEncoding(List<LabeledInstance<I, L>> data) {
	Indexer<F> featureIndexer = new Indexer<F>();
	Indexer<L> labelIndexer = new Indexer<L>();
	for (LabeledInstance<I, L> labeledInstance : data) {
		L label = labeledInstance.getLabel();
		Counter<F> features = featureExtractor
				.extractFeatures(labeledInstance.getInput());
		LabeledFeatureVector<F, L> labeledDatum = new BasicLabeledFeatureVector<F, L>(
				label, features);
		labelIndexer.getIndex(labeledDatum.getLabel());
		for (F feature : labeledDatum.getFeatures().keySet()) {
			featureIndexer.getIndex(feature);
		}
	}
	return new Encoding<F, L>(featureIndexer, labelIndexer);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:17,代码来源:MaximumEntropyClassifier.java

示例8: calculate

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
@Override
protected Pair<Double, double[]> calculate(double[] x) {
	weights = x;

	double objective = 0.0;
	double[] gradient = new double[dimension()];

	for (Pair<I, Double> datum : trainingData) {
		I input = datum.getFirst();
		Counter<Feature> featCounts = getFeatures(input);
		double guessResponse = getScore(featCounts);
		double goldResponse = datum.getSecond();
		double diff = (guessResponse - goldResponse);
		objective += 0.5 * diff * diff;
		for (Feature feat : featCounts.keySet()) {
			double count = featCounts.getCount(feat);
			gradient[feat.getIndex()] += count * diff;
		}
	}

	// TODO Auto-generated method stub
	return Pair.newPair(objective, gradient);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:24,代码来源:LinearRegression.java

示例9: main

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public static void main(String[] args) {
	List<String> elem1 = CollectionUtils.makeList("a", "b", "c");
	List<String> elem2 = CollectionUtils.makeList("a", "b");
	Pair<List<String>, Double> d1 = Pair.newPair(elem1, 3.0);
	Pair<List<String>, Double> d2 = Pair.newPair(elem2, 2.0);
	FeatureExtractor<List<String>, String> featExtractor = new FeatureExtractor<List<String>, String>() {

		public Counter<String> extractFeatures(List<String> instance) {
			Counter<String> counts = new Counter<String>();
			for (String elem : instance) {
				counts.incrementCount(elem, 1.0);
			}
			// TODO Auto-generated method stub
			return counts;
		}
	};
	LinearRegression.Factory<List<String>> factory = new LinearRegression.Factory<List<String>>(
			featExtractor);
	List<Pair<List<String>, Double>> datums = CollectionUtils.makeList(d1,
			d2);
	LinearRegression<List<String>> linearRegressionModel = factory
			.train(datums);
	double guess = linearRegressionModel.getResponse(elem1);
	System.out.println("guess: " + guess);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:26,代码来源:LinearRegression.java

示例10: logAdd

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public static <T> double logAdd(Counter<T> counts) {
	double[] arr = new double[counts.size()];
	int index = 0;
	for (Map.Entry<T, Double> entry : counts.entrySet()) {
		arr[index++] = entry.getValue();
	}
	return SloppyMath.logAdd(arr);
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:9,代码来源:SloppyMath.java

示例11: getLinearVertexScores

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public double[] getLinearVertexScores(InstanceSequence<V, E, L> sequence,
		int index, double[] w) {
	int numLabels = encoding.getNumLabels();
	double[] s = new double[numLabels];
	Counter<F> vertexFeatures = vertexExtractor.extractFeatures(sequence
			.getVertexInstance(index));
	for (int vc = 0; vc < numLabels; vc++) {
		double vertexScore = dotProduct(vertexFeatures, vc, w);
		s[vc] = vertexScore;
	}
	return s;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:13,代码来源:ScoreCalculator.java

示例12: dotProduct

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
private double dotProduct(Counter<F> features, int labelIndex, double[] w) {
	double val = 0.0;
	for (F feature : features.keySet()) {
		if (encoding.hasFeature(feature)) {
			int featureIndex = encoding.getFeatureIndex(feature);
			int linearIndex = il.getLinearIndex(featureIndex, labelIndex);
			val += features.getCount(feature) * w[linearIndex];
		}
	}
	return val;
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:12,代码来源:ScoreCalculator.java

示例13: combinePathCosts

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
/**
 * @param pathCosts
 * @param incomingRule
 * @param outgoingRule
 * @return
 */
private double combinePathCosts(Counter<Edge<V>> pathCosts,
		Edge<V> incomingRule, Edge<V> outgoingRule) {
	return this.sumInsteadOfMultipy ? (pathCosts.getCount(incomingRule) + pathCosts
			.getCount(outgoingRule))
			: (pathCosts.getCount(incomingRule) * pathCosts
					.getCount(outgoingRule));
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:14,代码来源:UnaryClosureComputer.java

示例14: CorpusStatistics

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
/**
 * Count statistics for a collection of StateSet trees.
 */
public CorpusStatistics(Numberer tagNumberer,
		Collection<Tree<StateSet>> trees) {
	counts = new int[tagNumberer.objects().size()];
	this.trees = trees;
	unaryRuleCounter = new Counter<UnaryRule>();
	binaryRuleCounter = new Counter<BinaryRule>();
	contexts = new int[tagNumberer.objects().size()];
	posCounter = new CounterMap<Integer, String>();
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:13,代码来源:CorpusStatistics.java

示例15: main

import edu.berkeley.nlp.util.Counter; //导入依赖的package包/类
public static void main(String[] args) {
	Counter<String> counter = new Counter<String>();
	System.out.println(counter);
	counter.incrementCount("planets", 7);
	System.out.println(counter);
	counter.incrementCount("planets", 1);
	System.out.println(counter);
	counter.setCount("suns", 1);
	System.out.println(counter);
	counter.setCount("aliens", 0);
	System.out.println(counter);
	System.out.println(counter.toString(2));
	System.out.println("Total: " + counter.totalCount());
}
 
开发者ID:text-machine-lab,项目名称:CliRel,代码行数:15,代码来源:BinaryCounterTable.java


注:本文中的edu.berkeley.nlp.util.Counter类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。