当前位置: 首页>>代码示例>>Java>>正文


Java TreeGP.fit方法代码示例

本文整理汇总了Java中com.github.chen0040.gp.treegp.TreeGP.fit方法的典型用法代码示例。如果您正苦于以下问题:Java TreeGP.fit方法的具体用法?Java TreeGP.fit怎么用?Java TreeGP.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在com.github.chen0040.gp.treegp.TreeGP的用法示例。


在下文中一共展示了TreeGP.fit方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: test_symbolic_regression

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setDisplayEvery(2);
   Solution program = tgp.fit(trainingData);
   logger.info("global: {}", program.mathExpression());

   test(program, testingData, false);

}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:18,代码来源:MexicanHatUnitTest.java

示例2: test_symbolic_regression_with_crossover_subtree_no_bias

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression_with_crossover_subtree_no_bias() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setCrossoverStrategy(TGPCrossoverStrategy.CROSSVOER_SUBTREE_NO_BIAS);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:18,代码来源:MexicanHatUnitTest.java

示例3: test_symbolic_regression_with_mutation_hoist

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression_with_mutation_hoist() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setMutationStrategy(TGPMutationStrategy.MUTATION_HOIST);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);
}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:17,代码来源:MexicanHatUnitTest.java

示例4: test_symbolic_regression_with_mutation_subtree_kinnear

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression_with_mutation_subtree_kinnear() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setMutationStrategy(TGPMutationStrategy.MUTATION_SUBTREE_KINNEAR);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:18,代码来源:MexicanHatUnitTest.java

示例5: test_symbolic_regression_replacement_mu_plus_lambda

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression_replacement_mu_plus_lambda() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setReplacementStrategy(TGPPopulationReplacementStrategy.MuPlusLambda);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:18,代码来源:MexicanHatUnitTest.java

示例6: test_symbolic_regression_pop_init_ptc_1

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_symbolic_regression_pop_init_ptc_1() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setPopulationInitializationStrategy(TGPInitializationStrategy.INITIALIZATION_METHOD_PTC1);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:18,代码来源:MexicanHatUnitTest.java

示例7: test_simple

import com.github.chen0040.gp.treegp.TreeGP; //导入方法依赖的package包/类
@Test
public void test_simple(){
   TreeGP tgp = new TreeGP();
   tgp.getOperatorSet().addAll(new Concat());
   tgp.addConstants("Hello", "World", "Hi", "There", "Morning", "Me", "Good", "You", "to", "!");
   tgp.setVariableCount(0);

   tgp.setCostEvaluator((program, observations)->{
      double error = 0;
      for(Observation obs : observations){
         TextObservation observation = (TextObservation)obs;
         program.executeWithText(observation);
         String predicted_text = observation.getPredictedTextOutput(0);
         error += Math.max(0, observation.text.length() - evaluate(observation.text, predicted_text));
         error += (double)(predicted_text.length() - observation.text.length()) / observation.text.length();
      }

      return error;
   });
   tgp.setPopulationSize(1000);
   tgp.setDisplayEvery(2);
   tgp.setMaxGeneration(100); // should be 1000 for full evolution

   List<Observation> trainingData = new ArrayList<>();
   TextObservation target = new TextObservation("Hello World Good Morning to You !");
   trainingData.add(target);

   Solution solution = tgp.fit(trainingData);

   solution.executeWithText(target);

   System.out.println(target.getPredictedTextOutput(0));
}
 
开发者ID:chen0040,项目名称:java-genetic-programming,代码行数:34,代码来源:TextGeneratorUnitTest.java


注:本文中的com.github.chen0040.gp.treegp.TreeGP.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。