本文整理汇总了Java中cern.colt.list.DoubleArrayList.get方法的典型用法代码示例。如果您正苦于以下问题:Java DoubleArrayList.get方法的具体用法?Java DoubleArrayList.get怎么用?Java DoubleArrayList.get使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cern.colt.list.DoubleArrayList
的用法示例。
在下文中一共展示了DoubleArrayList.get方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: validierung
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
public void validierung(DoubleArrayList trendbereinigtezeitreihe, DoubleMatrix2D matrixPhi, int p) {
double prognosewert = 0;
double realisierungsWert = trendbereinigtezeitreihe.get(trendbereinigtezeitreihe.size() - 1);
Trendgerade trend = new Trendgerade(new double[1]);
realisierungsWert = realisierungsWert + trend.getValue(p);
// Ein Durchlauf findet den Gewichtungsfaktor Phi und den dazu passenden
// Vergangenheitswert.
// Hier wird der Prognosewert für den Zeitpunkt 0 berechnet
for (int t = 0; t < p; t++) {
prognosewert = prognosewert
+ (matrixPhi.get(t, 0) * trendbereinigtezeitreihe.get(trendbereinigtezeitreihe.size() - (t + 2)));
}
prognosewert = prognosewert + trend.getValue(p);
// Berechnung der prozentualen Abweichung
double h = prognosewert / (realisierungsWert / 100);
// Die Variable abweichung enthält die Abweichung in %, abweichung =1
// --> Die Abweichung beträgt 1%
double abweichung = Math.abs(h - 100);
setAbweichung(abweichung);
}
示例2: SparseMultSparseTranspose
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
static public List<DoubleMatrix1D> SparseMultSparseTranspose(List<DoubleMatrix1D> A,
List<DoubleMatrix1D> B) {
int m = A.size();
int n = A.get(0).size();
int p = B.size();
List<DoubleMatrix1D> C = null;
if (C==null) {
C = new ArrayList<DoubleMatrix1D>();
for (int i = 0; i < m; ++i) {
C.add(new ColtSparseVector(p));
}
}
if (B.get(0).size() != n)
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
for (int i = 0; i < m; ++i) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
A.get(i).getNonZeros(indexList, valueList);
for (int j = 0; j < p; ++j) {
if (B.get(j).size() != A.get(i).size())
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
double sum = 0.0;
for (int k = 0; k < indexList.size(); ++k) {
int index = indexList.get(k);
double value1 = valueList.get(k);
double value2 = B.get(j).getQuick(index);
if (value1 != 0 || value2 != 0) {
sum += value1 * value2;
}
}
C.get(i).setQuick(j, sum);
}
}
return C;
}
示例3: getSparseTranspose
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
static public List<DoubleMatrix1D> getSparseTranspose(List<DoubleMatrix1D> A) {
List<DoubleMatrix1D> AT = new ArrayList<DoubleMatrix1D>();
for (int i = 0; i < A.get(0).size(); ++i) {
AT.add(new ColtSparseVector(A.size()));
}
for (int i = 0; i < A.size(); ++i) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
A.get(i).getNonZeros(indexList, valueList);
for (int k = 0; k < indexList.size(); ++k) {
int index = indexList.get(k);
double value = valueList.get(k);
AT.get(index).set(i, value);
}
}
return AT;
}
示例4: addNoise
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
public static void addNoise(DoubleMatrix2D s) {
IntArrayList is = new IntArrayList();
IntArrayList ks = new IntArrayList();
DoubleArrayList vs = new DoubleArrayList();
s.getNonZeros(is, ks, vs);
for (int j=0; j<is.size(); j++) {
int i = is.get(j);
int k = ks.get(j);
double v = vs.get(j);
v = v + (EPSILON * v + REALMIN100) * Math.random();
s.setQuick(i, k, v);
}
}
示例5: quantileElements
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
/**
* Computes the specified quantile elements over the values previously added.
* @param phis the quantiles for which elements are to be computed. Each phi must be in the interval (0.0,1.0]. <tt>phis</tt> must be sorted ascending.
* @return the approximate quantile elements.
*/
public DoubleArrayList quantileElements(DoubleArrayList phis) {
if (precomputeEpsilon<=0.0) return super.quantileElements(phis);
int quantilesToPrecompute = (int) Utils.epsilonCeiling(1.0 / precomputeEpsilon);
/*
if (phis.size() > quantilesToPrecompute) {
// illegal use case!
// we compute results, but loose explicit approximation guarantees.
return super.quantileElements(phis);
}
*/
//select that quantile from the precomputed set that corresponds to a position closest to phi.
phis = phis.copy();
double e = precomputeEpsilon;
for (int index=phis.size(); --index >= 0;) {
double phi = phis.get(index);
int i = (int) Math.round( ((2.0*phi/e) - 1.0 ) / 2.0); // finds closest
i = Math.min(quantilesToPrecompute-1, Math.max(0,i));
double augmentedPhi = (e/2.0)*(1+2*i);
phis.set(index,augmentedPhi);
}
return super.quantileElements(phis);
}
示例6: toString
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
/**
* Returns a string representation of the receiver, containing
* the String representation of each key-value pair, sorted ascending by key.
*/
public String toString() {
DoubleArrayList theKeys = keys();
theKeys.sort();
StringBuffer buf = new StringBuffer();
buf.append("[");
int maxIndex = theKeys.size() - 1;
for (int i = 0; i <= maxIndex; i++) {
double key = theKeys.get(i);
buf.append(String.valueOf(key));
buf.append("->");
buf.append(String.valueOf(get(key)));
if (i < maxIndex) buf.append(", ");
}
buf.append("]");
return buf.toString();
}
示例7: toStringByValue
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
/**
* Returns a string representation of the receiver, containing
* the String representation of each key-value pair, sorted ascending by value.
*/
public String toStringByValue() {
DoubleArrayList theKeys = new DoubleArrayList();
keysSortedByValue(theKeys);
StringBuffer buf = new StringBuffer();
buf.append("[");
int maxIndex = theKeys.size() - 1;
for (int i = 0; i <= maxIndex; i++) {
double key = theKeys.get(i);
buf.append(String.valueOf(key));
buf.append("->");
buf.append(String.valueOf(get(key)));
if (i < maxIndex) buf.append(", ");
}
buf.append("]");
return buf.toString();
}
示例8: restore
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
public List<DoubleMatrix1D> restore()
{
if (doc2graphidx == null)
return ans;
if (ans.size() == 0)
return ans;
Map<Integer, Integer> graphidx2doc = new HashMap<Integer, Integer>();
for (Entry<Integer, Integer> entry: doc2graphidx.entrySet())
{
graphidx2doc.put(entry.getValue(), entry.getKey());
}
List<DoubleMatrix1D> mat = new ArrayList<DoubleMatrix1D>();
for(int i = 0; i < doc_num; i++)
mat.add(new ColtSparseVector(doc_num));
for (int i = 0; i < ans.size(); i++)
{
DoubleMatrix1D shrinked_vec = ans.get(i), vec = mat.get(graphidx2doc.get(i));
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
shrinked_vec.getNonZeros(indexList, valueList);
for (int k = 0; k < indexList.size(); k++)
{
int idx = indexList.get(k);
double value = valueList.get(k);
vec.setQuick(graphidx2doc.get(idx), value);
}
}
return mat;
}
示例9: SparseMultSparse
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
static public List<DoubleMatrix1D> SparseMultSparse(List<DoubleMatrix1D> A,
List<DoubleMatrix1D> B) {
int m = A.size();
int n = A.get(0).size();
int p = B.get(0).size();
List<DoubleMatrix1D> C = null;
if (C==null) {
C = new ArrayList<DoubleMatrix1D>();
for (int i = 0; i < m; ++i) {
C.add(new ColtSparseVector(p));
}
}
if (B.size() != n)
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
for (int i = 0; i < m; ++i) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
A.get(i).getNonZeros(indexList, valueList);
for (int j = 0; j < p; ++j) {
if (B.size() != A.get(i).size())
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
double sum = 0.0;
for (int k = 0; k < indexList.size(); ++k) {
int index = indexList.get(k);
double value1 = valueList.get(k);
double value2 = B.get(index).getQuick(j);
if (value1 != 0 || value2 != 0) {
sum += value1 * value2;
}
}
C.get(i).setQuick(j, sum);
}
}
return C;
}
示例10: getSqrSum
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
public static double getSqrSum(DoubleArrayList valueList)
{
double sum =0, tmp ;
for (int i = 0; i < valueList.size(); i++)
{
tmp = valueList.get(i);
sum += tmp * tmp;
}
return sum;
}
示例11: load_metapath
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
@SuppressWarnings("unchecked")
double[] load_metapath(MetaPath metaPath)
{
mat = null;
try {
String suffix = "/" + (metaPath.path.size()-1) + "/" + metaPath.toString() + ".mat";
mat = (List<DoubleMatrix1D>) ObjectWriter.readObject(MatDir + suffix);
if (mat == null)
{
System.err.println("err metapath:" + metaPath);
return null;
}
} catch (Exception e) {
e.printStackTrace();
}
IntArrayList indexArrayList = new IntArrayList();
DoubleArrayList valueArrayList = new DoubleArrayList();
if (doc_num == 0 && mat.size() > 0)
doc_num = mat.size();
double[] hasInstance = new double[doc_num];
if (mat.size() > 0)
{
for (int i = 0; i < doc_num ; i++)
{
mat.get(i).getNonZeros(indexArrayList, valueArrayList);
for (int j = 0; j < valueArrayList.size(); j++)
if (valueArrayList.get(j) > 0.0001 && i != j)
{
hasInstance[i] = 1;
break;
}
}
return hasInstance;
} else {
System.err.println("err metapath:" + metaPath);
return null;
}
}
示例12: performExperiment
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
/**
* Performs one experiment
* @param algorithm
* @param benchmarkMeasure
* @param dataset
* @param measure
* @param criterion
* @param suppressionLimit
* @throws IOException
*/
private static void performExperiment(BenchmarkDataset dataset,
BenchmarkQualityMeasure measure,
BenchmarkPrivacyModel criterion,
double suppressionLimit) throws IOException {
System.out.println("Performing experiment 3 - " + dataset + "/" + measure + "/" +criterion + "/" + suppressionLimit);
// Perform
BenchmarkResults run = BenchmarkEnvironment.getBenchmarkResults(BenchmarkAlgorithm.LIGHTNING, dataset, measure, criterion, 600 * 1000, suppressionLimit);
DoubleArrayList trackRecord = run.trackRecord;
// Check if completed
boolean complete = run.executionTime < 600 * 1000;
// Min and max
double min = trackRecord.get(1);
double max = trackRecord.get(trackRecord.size()-1);
// For each step
double previous = Double.MAX_VALUE;
for (int i = 0; i < trackRecord.size(); i += 2) {
// Normalize
double utility = min == max ? 1d : (trackRecord.get(i + 1) - min) / (max - min);
// Ignore steps in which utility did not change
if (utility == -0d) utility = +0d;
if (utility != previous) {
previous = utility;
BENCHMARK.addRun(measure.toString(), criterion.toString(), String.valueOf(suppressionLimit), dataset.toString());
BENCHMARK.addValue(TIME, trackRecord.get(i));
BENCHMARK.addValue(QUALITY, utility);
BENCHMARK.addValue(COMPLETE, complete);
}
}
}
示例13: binaryMultiSearch
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
/**
* Finds the first and last indexes of a specific element within a sorted list.
* @return int[]
* @param list cern.colt.list.DoubleArrayList
* @param element the element to search for
*/
protected static IntArrayList binaryMultiSearch(DoubleArrayList list, double element) {
int index = list.binarySearch(element);
if (index<0) return null; //not found
int from = index-1;
while (from>=0 && list.get(from)==element) from--;
from++;
int to = index+1;
while (to<list.size() && list.get(to)==element) to++;
to--;
return new IntArrayList(new int[] {from,to});
}
示例14: covariance2
import cern.colt.list.DoubleArrayList; //导入方法依赖的package包/类
private static double covariance2(DoubleArrayList data1, DoubleArrayList data2) {
int size = data1.size();
double mean1 = Descriptive.mean(data1);
double mean2 = Descriptive.mean(data2);
double covariance = 0.0D;
for (int i = 0; i < size; i++) {
double x = data1.get(i);
double y = data2.get(i);
covariance += (x - mean1) * (y - mean2);
}
return covariance / (double) (size-1);
}