本文整理汇总了Java中cern.colt.list.DoubleArrayList类的典型用法代码示例。如果您正苦于以下问题:Java DoubleArrayList类的具体用法?Java DoubleArrayList怎么用?Java DoubleArrayList使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
DoubleArrayList类属于cern.colt.list包,在下文中一共展示了DoubleArrayList类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getNonZeros
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
public void getNonZeros(IntArrayList indexList, DoubleArrayList valueList) {
boolean fillIndexList = indexList != null;
boolean fillValueList = valueList != null;
if (fillIndexList)
indexList.clear();
else {
System.out.println("Wrong use");
return;
}
if (fillValueList)
valueList.clear();
else {
System.out.println("Wrong use");
return;
}
int[] index = elements.keys().elements();
double[] value = elements.values().elements();
indexList.elements(index);
valueList.elements(value);
// for (int i = 0; i < index.size(); ++i) {
// indexList.add(index.get(i));
// valueList.add(value.get(i));
// }
// int s = size;
// for (int i=0; i < s; i++) {
// double value = getQuick(i);
// if (value != 0) {
// if (fillIndexList) indexList.add(i);
// if (fillValueList) valueList.add(value);
// }
// }
}
示例2: validierung
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
public void validierung(DoubleArrayList trendbereinigtezeitreihe, DoubleMatrix2D matrixPhi, int p) {
double prognosewert = 0;
double realisierungsWert = trendbereinigtezeitreihe.get(trendbereinigtezeitreihe.size() - 1);
Trendgerade trend = new Trendgerade(new double[1]);
realisierungsWert = realisierungsWert + trend.getValue(p);
// Ein Durchlauf findet den Gewichtungsfaktor Phi und den dazu passenden
// Vergangenheitswert.
// Hier wird der Prognosewert für den Zeitpunkt 0 berechnet
for (int t = 0; t < p; t++) {
prognosewert = prognosewert
+ (matrixPhi.get(t, 0) * trendbereinigtezeitreihe.get(trendbereinigtezeitreihe.size() - (t + 2)));
}
prognosewert = prognosewert + trend.getValue(p);
// Berechnung der prozentualen Abweichung
double h = prognosewert / (realisierungsWert / 100);
// Die Variable abweichung enthält die Abweichung in %, abweichung =1
// --> Die Abweichung beträgt 1%
double abweichung = Math.abs(h - 100);
setAbweichung(abweichung);
}
示例3: SparseMultSparseTranspose
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
static public List<DoubleMatrix1D> SparseMultSparseTranspose(List<DoubleMatrix1D> A,
List<DoubleMatrix1D> B) {
int m = A.size();
int n = A.get(0).size();
int p = B.size();
List<DoubleMatrix1D> C = null;
if (C==null) {
C = new ArrayList<DoubleMatrix1D>();
for (int i = 0; i < m; ++i) {
C.add(new ColtSparseVector(p));
}
}
if (B.get(0).size() != n)
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
for (int i = 0; i < m; ++i) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
A.get(i).getNonZeros(indexList, valueList);
for (int j = 0; j < p; ++j) {
if (B.get(j).size() != A.get(i).size())
throw new IllegalArgumentException("Matrix2D inner dimensions must agree.");
double sum = 0.0;
for (int k = 0; k < indexList.size(); ++k) {
int index = indexList.get(k);
double value1 = valueList.get(k);
double value2 = B.get(j).getQuick(index);
if (value1 != 0 || value2 != 0) {
sum += value1 * value2;
}
}
C.get(i).setQuick(j, sum);
}
}
return C;
}
示例4: getSparseTranspose
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
static public List<DoubleMatrix1D> getSparseTranspose(List<DoubleMatrix1D> A) {
List<DoubleMatrix1D> AT = new ArrayList<DoubleMatrix1D>();
for (int i = 0; i < A.get(0).size(); ++i) {
AT.add(new ColtSparseVector(A.size()));
}
for (int i = 0; i < A.size(); ++i) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
A.get(i).getNonZeros(indexList, valueList);
for (int k = 0; k < indexList.size(); ++k) {
int index = indexList.get(k);
double value = valueList.get(k);
AT.get(index).set(i, value);
}
}
return AT;
}
示例5: productQuick
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
static public double productQuick(DoubleMatrix1D v1, DoubleMatrix1D v2) {
IntArrayList indexList = new IntArrayList();
DoubleArrayList valueList = new DoubleArrayList();
v1.getNonZeros(indexList, valueList);
double prod = 0.0;
for (int i = 0; i < indexList.size(); ++i) {
double temp = v2.getQuick(indexList.getQuick(i));
if (temp != 0.0) {
prod += valueList.getQuick(i) * temp;
}
}
// for (int i = 0; i < v1.size(); ++i) {
// double temp1 = v1.getQuick(i);
// double temp2 = v2.getQuick(i);
// if (temp1 != 0.0 || temp2 != 0.0) {
// prod += temp1 * temp2;
// }
// }
return prod;
}
示例6: computeCosineSimilarity
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
public static double computeCosineSimilarity(IntArrayList indexA, DoubleArrayList valueA, DoubleMatrix1D B, DoubleArrayList valueB)
{
double sim = -1;
double num = 0;
double den = 0;
double den_1 = 0;
double den_2 = 0;
num = Matrix2DUtil.productQuick(indexA, valueA, B);
den_1 = Matrix2DUtil.getSqrSum(valueA);
den_2 = Matrix2DUtil.getSqrSum(valueB);
den = Math.sqrt(den_1) * Math.sqrt(den_2);
if(den == 0)
return 0;
sim = num/den;
return sim;
}
示例7: addNoise
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
public static void addNoise(DoubleMatrix2D s) {
IntArrayList is = new IntArrayList();
IntArrayList ks = new IntArrayList();
DoubleArrayList vs = new DoubleArrayList();
s.getNonZeros(is, ks, vs);
for (int j=0; j<is.size(); j++) {
int i = is.get(j);
int k = ks.get(j);
double v = vs.get(j);
v = v + (EPSILON * v + REALMIN100) * Math.random();
s.setQuick(i, k, v);
}
}
示例8: add
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* Adds the specified element to the receiver.
*
* @param element element to be appended.
*/
public synchronized void add(double element) {
// prototyping implementation; inefficient; TODO
this.addAllOf(new DoubleArrayList(new double[] {element}));
/*
sumSquares += element * element;
if (this.done == 0) { // initial setup
this.min = element;
this.max = element;
}
else {
if (element < this.min) this.min = element;
if (element > this.max) this.max = element;
double oldMean = this.mean;
this.mean += (element - this.mean)/(done+1);
this.sumsq += (element-this.mean)*(element-oldMean); // cool, huh?
}
this.done++;
*/
}
示例9: addAllOfFromTo
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* Adds the part of the specified list between indexes <tt>from</tt> (inclusive) and <tt>to</tt> (inclusive) to the receiver.
*
* @param list the list of which elements shall be added.
* @param from the index of the first element to be added (inclusive).
* @param to the index of the last element to be added (inclusive).
* @throws IndexOutOfBoundsException if <tt>list.size()>0 && (from<0 || from>to || to>=list.size())</tt>.
*/
public synchronized void addAllOfFromTo(DoubleArrayList list, int from, int to) {
//if (this.arguments == null) setUpCache();
synchronized (arguments) {
// prepare arguments
arguments[0] = this.min;
arguments[1] = this.max;
arguments[2] = this.sum;
arguments[3] = this.sum_xx;
Descriptive.incrementalUpdate(list, from, to, arguments);
// store the new parameters back
this.min = arguments[0];
this.max = arguments[1];
this.sum = arguments[2];
this.sum_xx = arguments[3];
this.size += to-from+1;
}
}
示例10: addAllOfFromTo
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* Adds the part of the specified list between indexes <tt>from</tt> (inclusive) and <tt>to</tt> (inclusive) to the receiver.
*
* @param list the list of which elements shall be added.
* @param from the index of the first element to be added (inclusive).
* @param to the index of the last element to be added (inclusive).
* @throws IndexOutOfBoundsException if <tt>list.size()>0 && (from<0 || from>to || to>=list.size())</tt>.
*/
public synchronized void addAllOfFromTo(DoubleArrayList list, int from, int to) {
super.addAllOfFromTo(list, from, to);
if (this.sumOfPowers != null) {
//int max_k = this.min_k + this.sumOfPowers.length-1;
Descriptive.incrementalUpdateSumsOfPowers(list, from, to, 3, getMaxOrderForSumOfPowers(), this.sumOfPowers);
}
if (this.hasSumOfInversions) {
this.sumOfInversions += Descriptive.sumOfInversions(list, from, to);
}
if (this.hasSumOfLogarithms) {
this.sumOfLogarithms += Descriptive.sumOfLogarithms(list, from, to);
}
}
示例11: testLargeMatrix_build1
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/** Tests whether buildSolver works. */
@Test
public final void testLargeMatrix_build1()
{
for(int size=100;size<2100;size+=400)
for(int elemsPerColExp=0;elemsPerColExp< 7;elemsPerColExp++)
{
int elemsPerColExpected = (int)Math.pow(2, elemsPerColExp);
DoubleMatrix2D matrix = buildSolver(size,elemsPerColExpected).toDoubleMatrix2D();
IntArrayList CoordX = new IntArrayList(),CoordY = new IntArrayList();DoubleArrayList values = new DoubleArrayList();
matrix.getNonZeros(CoordY, CoordX, values);
int nz=CoordX.size();
int diagElements = 0, nondiagElements = 0;
for(int i=0;i<nz;++i)
{
if (CoordX.getQuick(i) == CoordY.getQuick(i))
{
Assert.assertEquals(1, values.getQuick(i),Configuration.fpAccuracy);diagElements++;
}
else nondiagElements++;
}
Assert.assertEquals(size, diagElements);
Assert.assertEquals(size*(elemsPerColExpected-1), nondiagElements);
}
}
示例12: learnStateFromRegions
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
public void learnStateFromRegions(int state,
Collection<Region> regions) throws NotFoundException {
DoubleArrayList values = new DoubleArrayList();
for (Region r : regions) {
data.window(r.getChrom(), r.getStart(), r.getEnd());
for (int i = 0; i < data.getCount(); i++) {
for (int j = 0; j < data.getReplicates(i); j++) {
double d = Math.log(data.getRatio(i,j));
if (!(Double.isInfinite(d) || Double.isNaN(d))) {
values.add(d);
}
}
}
}
double mean = Descriptive.mean(values);
double std = Descriptive.standardDeviation(Descriptive.variance(values.size(),
Descriptive.sum(values),
Descriptive.sumOfSquares(values)));
/* TODO : verify that OpdfGaussian wants the variance rather than the stddev */
pdfs.set(state, new OpdfGaussian(mean, std * std));
}
示例13: quantileElements
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* Computes the specified quantile elements over the values previously added.
* @param phis the quantiles for which elements are to be computed. Each phi must be in the interval (0.0,1.0]. <tt>phis</tt> must be sorted ascending.
* @return the approximate quantile elements.
*/
public DoubleArrayList quantileElements(DoubleArrayList phis) {
if (precomputeEpsilon<=0.0) return super.quantileElements(phis);
int quantilesToPrecompute = (int) Utils.epsilonCeiling(1.0 / precomputeEpsilon);
/*
if (phis.size() > quantilesToPrecompute) {
// illegal use case!
// we compute results, but loose explicit approximation guarantees.
return super.quantileElements(phis);
}
*/
//select that quantile from the precomputed set that corresponds to a position closest to phi.
phis = phis.copy();
double e = precomputeEpsilon;
for (int index=phis.size(); --index >= 0;) {
double phi = phis.get(index);
int i = (int) Math.round( ((2.0*phi/e) - 1.0 ) / 2.0); // finds closest
i = Math.min(quantilesToPrecompute-1, Math.max(0,i));
double augmentedPhi = (e/2.0)*(1+2*i);
phis.set(index,augmentedPhi);
}
return super.quantileElements(phis);
}
示例14: observedEpsilonAtPhi
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* This method was created in VisualAge.
* @return double[]
* @param values cern.it.hepodbms.primitivearray.DoubleArrayList
* @param phis double[]
*/
public static double observedEpsilonAtPhi(double phi, ExactDoubleQuantileFinder exactFinder, DoubleQuantileFinder approxFinder) {
int N = (int) exactFinder.size();
int exactRank = (int) Utils.epsilonCeiling(phi * N) - 1;
//System.out.println("exactRank="+exactRank);
exactFinder.quantileElements(new DoubleArrayList(new double[] {phi})).get(0); // just to ensure exactFinder is sorted
double approxElement = approxFinder.quantileElements(new DoubleArrayList(new double[] {phi})).get(0);
//System.out.println("approxElem="+approxElement);
IntArrayList approxRanks = binaryMultiSearch(exactFinder.buffer, approxElement);
int from = approxRanks.get(0);
int to = approxRanks.get(1);
int distance;
if (from<=exactRank && exactRank<=to) distance = 0;
else {
if (from>exactRank) distance=Math.abs(from-exactRank);
else distance=Math.abs(exactRank-to);
}
double epsilon = (double)distance / (double)N;
return epsilon;
}
示例15: covariance
import cern.colt.list.DoubleArrayList; //导入依赖的package包/类
/**
* Returns the covariance of two data sequences, which is
* <tt>cov(x,y) = (1/(size()-1)) * Sum((x[i]-mean(x)) * (y[i]-mean(y)))</tt>.
* See the <A HREF="http://www.cquest.utoronto.ca/geog/ggr270y/notes/not05efg.html"> math definition</A>.
*/
public static double covariance(DoubleArrayList data1, DoubleArrayList data2) {
int size = data1.size();
if (size != data2.size() || size == 0) throw new IllegalArgumentException();
double[] elements1 = data1.elements();
double[] elements2 = data2.elements();
double sumx=elements1[0], sumy=elements2[0], Sxy=0;
for (int i=1; i<size; ++i) {
double x = elements1[i];
double y = elements2[i];
sumx += x;
Sxy += (x - sumx/(i+1))*(y - sumy/i);
sumy += y;
// Exercise for the reader: Why does this give us the right answer?
}
return Sxy/(size-1);
}