本文整理汇总了Java中cc.mallet.types.MatrixOps.sum方法的典型用法代码示例。如果您正苦于以下问题:Java MatrixOps.sum方法的具体用法?Java MatrixOps.sum怎么用?Java MatrixOps.sum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cc.mallet.types.MatrixOps
的用法示例。
在下文中一共展示了MatrixOps.sum方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testSample
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void testSample ()
{
Variable v = new Variable (3);
double[] vals = new double[] { 1, 3, 2 };
TableFactor ptl = new TableFactor (v, vals);
int[] sampled = new int [100];
Randoms r = new Randoms (32423);
for (int i = 0; i < sampled.length; i++) {
sampled[i] = ptl.sampleLocation (r);
}
double sum = MatrixOps.sum (vals);
double[] counts = new double [vals.length];
for (int i = 0; i < vals.length; i++) {
counts[i] = ArrayUtils.count (sampled, i);
}
MatrixOps.print (counts);
for (int i = 0; i < vals.length; i++) {
double prp = counts[i] / ((double) sampled.length);
assertEquals (vals[i] / sum, prp, 0.1);
}
}
示例2: testContinousSample
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void testContinousSample () throws IOException
{
ModelReader reader = new ModelReader ();
FactorGraph fg = reader.readModel (new BufferedReader (new StringReader (uniformMdlstr)));
Randoms r = new Randoms (324143);
Assignment allAssn = new Assignment ();
for (int i = 0; i < 10000; i++) {
Assignment row = fg.sample (r);
allAssn.addRow (row);
}
Variable x1 = fg.findVariable ("x1");
Assignment assn1 = (Assignment) allAssn.marginalize (x1);
int[] col = assn1.getColumnInt (x1);
double mean = MatrixOps.sum (col) / ((double)col.length);
assertEquals (0.5, mean, 0.025);
}
示例3: testContinousSample2
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void testContinousSample2 () throws IOException
{
ModelReader reader = new ModelReader ();
FactorGraph fg = reader.readModel (new BufferedReader (new StringReader (uniformMdlstr2)));
Randoms r = new Randoms (324143);
Assignment allAssn = new Assignment ();
for (int i = 0; i < 10000; i++) {
Assignment row = fg.sample (r);
allAssn.addRow (row);
}
Variable x1 = fg.findVariable ("x2");
Assignment assn1 = (Assignment) allAssn.marginalize (x1);
int[] col = assn1.getColumnInt (x1);
double mean = MatrixOps.sum (col) / ((double)col.length);
assertEquals (0.5, mean, 0.01);
Variable x2 = fg.findVariable ("x2");
Assignment assn2 = (Assignment) allAssn.marginalize (x2);
int[] col2 = assn2.getColumnInt (x2);
double mean2 = MatrixOps.sum (col2) / ((double)col2.length);
assertEquals (0.5, mean2, 0.025);
}
示例4: getValue
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public double getValue () {
if (cacheIndicator.isValueStale()) {
// compute values again
try {
// run all threads and wait for them to finish
List<Future<Double>> results = executor.invokeAll(valueTasks);
// compute final log probability
int batch = 0;
for (Future<Double> f : results) {
try {
batchCachedValue[batch++] = f.get();
} catch (ExecutionException ee) {
ee.printStackTrace();
}
}
} catch (InterruptedException ie) {
ie.printStackTrace();
}
double cachedValue = MatrixOps.sum(batchCachedValue);
logger.info("getValue() (loglikelihood, optimizable by label likelihood) =" + cachedValue);
return cachedValue;
}
return MatrixOps.sum(batchCachedValue);
}
示例5: testSumLogProb
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void testSumLogProb ()
{
double[] vals = { 53.0, 1.56e4, 0.0045, 672.563, 1e-15 };
double[] logVals = new double [vals.length];
for (int i = 0; i < vals.length; i++)
logVals [i] = Math.log (vals[i]);
double sum = MatrixOps.sum (vals);
double lsum2 = Double.NEGATIVE_INFINITY;
for (int i = 0; i < logVals.length; i++) {
lsum2 = Maths.sumLogProb (lsum2, logVals [i]);
}
assertEquals (sum, Math.exp(lsum2), 1e-5);
double lsum = Maths.sumLogProb (logVals);
assertEquals (sum, Math.exp (lsum), 1e-5);
}
示例6: ignoretestContinousSample
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void ignoretestContinousSample () throws IOException
{
ModelReader reader = new ModelReader ();
FactorGraph fg = reader.readModel (new BufferedReader (new StringReader (uniformMdlstr)));
Randoms r = new Randoms (324143);
Assignment allAssn = new Assignment ();
for (int i = 0; i < 10000; i++) {
Assignment row = fg.sample (r);
allAssn.addRow (row);
}
Variable x1 = fg.findVariable ("x1");
Assignment assn1 = (Assignment) allAssn.marginalize (x1);
int[] col = assn1.getColumnInt (x1);
double mean = MatrixOps.sum (col) / ((double)col.length);
assertEquals (0.5, mean, 0.025);
}
示例7: ignoretestContinousSample2
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public void ignoretestContinousSample2 () throws IOException
{
ModelReader reader = new ModelReader ();
FactorGraph fg = reader.readModel (new BufferedReader (new StringReader (uniformMdlstr2)));
Randoms r = new Randoms (324143);
Assignment allAssn = new Assignment ();
for (int i = 0; i < 10000; i++) {
Assignment row = fg.sample (r);
allAssn.addRow (row);
}
Variable x1 = fg.findVariable ("x2");
Assignment assn1 = (Assignment) allAssn.marginalize (x1);
int[] col = assn1.getColumnInt (x1);
double mean = MatrixOps.sum (col) / ((double)col.length);
assertEquals (0.5, mean, 0.01);
Variable x2 = fg.findVariable ("x2");
Assignment assn2 = (Assignment) allAssn.marginalize (x2);
int[] col2 = assn2.getColumnInt (x2);
double mean2 = MatrixOps.sum (col2) / ((double)col2.length);
assertEquals (0.5, mean2, 0.025);
}
示例8: toString
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public String toString () {
StringBuffer sb = new StringBuffer ();
int maxLabelNameLength = 0;
LabelAlphabet labelAlphabet = trial.getClassifier().getLabelAlphabet();
for (int i = 0; i < numClasses; i++) {
int len = labelAlphabet.lookupLabel(i).toString().length();
if (maxLabelNameLength < len) {
maxLabelNameLength = len;
}
}
// These counts will be integers, but we'll keep them as doubles so we can divide later
double[] correctLabelCounts = new double[values.length];
for (int i = 0; i < correctLabelCounts.length; i++){
// This sum is the number of instances whose correct class is i
correctLabelCounts[i] = MatrixOps.sum(values[i]);
}
// Find the count of the most frequent class and divide that by
// the total number of instances.
double baselineAccuracy = MatrixOps.max(correctLabelCounts) / MatrixOps.sum(correctLabelCounts);
sb.append ("Confusion Matrix, row=true, column=predicted accuracy="+trial.getAccuracy()+" most-frequent-tag baseline="+baselineAccuracy+"\n");
for (int i = 0; i < maxLabelNameLength-5+4; i++) { sb.append (' '); }
sb.append ("label");
for (int c2 = 0; c2 < Math.min(10,numClasses); c2++) { sb.append (" "+c2); }
for (int c2 = 10; c2 < numClasses; c2++) { sb.append (" " + c2); }
sb.append (" |total\n");
for (int c = 0; c < numClasses; c++) {
appendJustifiedInt (sb, c, false);
String labelName = labelAlphabet.lookupLabel(c).toString();
for (int i = 0; i < maxLabelNameLength-labelName.length(); i++) { sb.append (' '); }
sb.append (" "+labelName+" ");
for (int c2 = 0; c2 < numClasses; c2++) {
appendJustifiedInt (sb, values[c][c2], true);
sb.append (' ');
}
sb.append (" |"+ MatrixOps.sum(values[c]));
sb.append ('\n');
}
return sb.toString();
}