本文整理汇总了Java中cc.mallet.types.MatrixOps.rowPlusEquals方法的典型用法代码示例。如果您正苦于以下问题:Java MatrixOps.rowPlusEquals方法的具体用法?Java MatrixOps.rowPlusEquals怎么用?Java MatrixOps.rowPlusEquals使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cc.mallet.types.MatrixOps
的用法示例。
在下文中一共展示了MatrixOps.rowPlusEquals方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getValue
import cc.mallet.types.MatrixOps; //导入方法依赖的package包/类
public double getValue ()
{
if (cachedValueStale) {
numGetValueCalls++;
cachedValue = 0;
// We'll store the expectation values in "cachedGradient" for now
cachedGradientStale = true;
MatrixOps.setAll (cachedGradient, 0.0);
// Incorporate likelihood of data
double[] scores = new double[trainingList.getTargetAlphabet().size()];
double value = 0.0;
Iterator<Instance> iter = trainingList.iterator();
int ii=0;
while (iter.hasNext()) {
ii++;
Instance instance = iter.next();
double instanceWeight = trainingList.getInstanceWeight(instance);
Labeling labeling = instance.getLabeling ();
if (labeling == null)
continue;
//System.out.println("L Now "+inputAlphabet.size()+" regular features.");
this.theClassifier.getClassificationScores (instance, scores);
FeatureVector fv = (FeatureVector) instance.getData ();
int li = labeling.getBestIndex();
value = - (instanceWeight * Math.log (scores[li]));
if(Double.isNaN(value)) {
logger.fine ("MaxEntTrainer: Instance " + instance.getName() +
"has NaN value. log(scores)= " + Math.log(scores[li]) +
" scores = " + scores[li] +
" has instance weight = " + instanceWeight);
}
if (Double.isInfinite(value)) {
logger.warning ("Instance "+instance.getSource() + " has infinite value; skipping value and gradient");
cachedValue -= value;
cachedValueStale = false;
return -value;
// continue;
}
cachedValue += value;
for (int si = 0; si < scores.length; si++) {
if (scores[si] == 0) continue;
assert (!Double.isInfinite(scores[si]));
MatrixOps.rowPlusEquals (cachedGradient, numFeatures,
si, fv, -instanceWeight * scores[si]);
cachedGradient[numFeatures*si + defaultFeatureIndex] += (-instanceWeight * scores[si]);
}
}
//logger.info ("-Expectations:"); cachedGradient.print();
// Incorporate prior on parameters
double prior = 0;
if (usingHyperbolicPrior) {
for (int li = 0; li < numLabels; li++)
for (int fi = 0; fi < numFeatures; fi++)
prior += (hyperbolicPriorSlope / hyperbolicPriorSharpness
* Math.log (Maths.cosh (hyperbolicPriorSharpness * parameters[li *numFeatures + fi])));
}
else if (usingGaussianPrior) {
for (int li = 0; li < numLabels; li++)
for (int fi = 0; fi < numFeatures; fi++) {
double param = parameters[li*numFeatures + fi];
prior += param * param / (2 * gaussianPriorVariance);
}
}
double oValue = cachedValue;
cachedValue += prior;
cachedValue *= -1.0; // MAXIMIZE, NOT MINIMIZE
cachedValueStale = false;
progressLogger.info ("Value (labelProb="+oValue+" prior="+prior+") loglikelihood = "+cachedValue);
}
return cachedValue;
}
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:76,代码来源:MaxEntOptimizableByLabelLikelihood.java