本文整理汇总了Java中org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm类的典型用法代码示例。如果您正苦于以下问题:Java PolynomialFunctionLagrangeForm类的具体用法?Java PolynomialFunctionLagrangeForm怎么用?Java PolynomialFunctionLagrangeForm使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
PolynomialFunctionLagrangeForm类属于org.apache.commons.math3.analysis.polynomials包,在下文中一共展示了PolynomialFunctionLagrangeForm类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: interpolate
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例2: computeDividedDifference
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre>
* <p>
* The computational complexity is \(O(n^2)\) where \(n\) is the common
* length of {@code x} and {@code y}.</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例3: computeDividedDifference
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例4: unwrap
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
/**
* Unwraps a Lagrange.
*
* @param lagrange a Commons polynomial in Lagrange form
* @return an OG 1-D function mapping doubles to doubles
*/
public static Function<Double, Double> unwrap(PolynomialFunctionLagrangeForm lagrange) {
ArgChecker.notNull(lagrange, "lagrange");
return new Function<Double, Double>() {
@Override
public Double apply(Double x) {
try {
return lagrange.value(x);
} catch (DimensionMismatchException | NonMonotonicSequenceException | NumberIsTooSmallException e) {
throw new MathException(e);
}
}
};
}
示例5: Device
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
public Device(Integer deviceID, String MACAddress, String name, List<Position> positions)
{
this.deviceID = deviceID;
this.MACAddress = MACAddress;
this.name = name;
this.positions = new ArrayList<Position>(positions);
this.path = new ArrayList<PolynomialFunctionLagrangeForm>();
}
示例6: createInterpolationFunction
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
public UnivariateFunction createInterpolationFunction(List<Double> x, List<Double> y) {
if (y.size() != x.size()) {
throw new DimensionMismatchException(y.size(), x.size());
}
int n = x.size();
List<Double> nonNullX = new ArrayList<>(n);
List<Double> nonNullY = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
if (x.get(i) != null && y.get(i) != null) {
nonNullX.add(x.get(i));
nonNullY.add(y.get(i));
}
}
switch (type) {
case STEP:
return new StepFunction(Doubles.toArray(nonNullX), Doubles.toArray(nonNullY));
case LINEAR:
return new LinearFunction(Doubles.toArray(nonNullX), Doubles.toArray(nonNullY));
case SPLINE:
return new SplineInterpolator().interpolate(Doubles.toArray(nonNullX), Doubles.toArray(nonNullY));
case LAGRANGE:
return new PolynomialFunctionLagrangeForm(Doubles.toArray(nonNullX), Doubles.toArray(nonNullY));
default:
throw new RuntimeException("Unknown type of InterpolationFactory: " + type);
}
}
示例7: testLagrange
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
@Test
public void testLagrange() {
int n = OG_POLYNOMIAL.getCoefficients().length;
double[] x = new double[n];
double[] y = new double[n];
for (int i = 0; i < n; i++) {
x[i] = i;
y[i] = OG_POLYNOMIAL.applyAsDouble(x[i]);
}
Function<Double, Double> unwrapped = CommonsMathWrapper.unwrap(new PolynomialFunctionLagrangeForm(x, y));
for (int i = 0; i < 100; i++) {
assertEquals(unwrapped.apply(i + 0.5), OG_POLYNOMIAL.applyAsDouble(i + 0.5), 1e-9);
}
}
示例8: getPath
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
public List<PolynomialFunctionLagrangeForm> getPath() {
return path;
}
示例9: setPath
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
public void setPath(List<PolynomialFunctionLagrangeForm> path) {
this.path = path;
}
示例10: testNullLagrange
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNullLagrange() {
CommonsMathWrapper.unwrap((PolynomialFunctionLagrangeForm) null);
}
示例11: interpolate
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入依赖的package包/类
/**
* Computes an interpolating function for the data set.
*
* @param x Interpolating points.
* @param y Interpolating values.
* @return a function which interpolates the data set
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if two abscissae have the same
* value.
*/
public PolynomialFunctionLagrangeForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
return new PolynomialFunctionLagrangeForm(x, y);
}