本文整理汇总了Java中org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm.verifyInterpolationArray方法的典型用法代码示例。如果您正苦于以下问题:Java PolynomialFunctionLagrangeForm.verifyInterpolationArray方法的具体用法?Java PolynomialFunctionLagrangeForm.verifyInterpolationArray怎么用?Java PolynomialFunctionLagrangeForm.verifyInterpolationArray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm
的用法示例。
在下文中一共展示了PolynomialFunctionLagrangeForm.verifyInterpolationArray方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: interpolate
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入方法依赖的package包/类
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例2: computeDividedDifference
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入方法依赖的package包/类
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre>
* <p>
* The computational complexity is \(O(n^2)\) where \(n\) is the common
* length of {@code x} and {@code y}.</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例3: computeDividedDifference
import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionLagrangeForm; //导入方法依赖的package包/类
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}