当前位置: 首页>>代码示例>>Java>>正文


Java SumLatticeDefault类代码示例

本文整理汇总了Java中cc.mallet.fst.SumLatticeDefault的典型用法代码示例。如果您正苦于以下问题:Java SumLatticeDefault类的具体用法?Java SumLatticeDefault怎么用?Java SumLatticeDefault使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


SumLatticeDefault类属于cc.mallet.fst包,在下文中一共展示了SumLatticeDefault类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: computeExpectations

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
/**
 * Resets, computes and fills expectations from all instances, also updating
 * the entropy value. <p>
 *
 * Analogous to <tt>CRFOptimizableByLabelLikelihood.getExpectationValue<tt>.
 */
public void computeExpectations() {
	expectations.zero();

  // now, update the expectations due to each instance for entropy reg.
  for (int ii = 0; ii < data.size(); ii++) {
    FeatureVectorSequence input = (FeatureVectorSequence) data.get(ii).getData();
    SumLattice lattice = new SumLatticeDefault(crf,input, true);

    // udpate the expectations
    EntropyLattice entropyLattice = new EntropyLattice(
        input, lattice.getGammas(), lattice.getXis(), crf,
        incrementor, scalingFactor);
    cachedValue += entropyLattice.getEntropy();
  }
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:22,代码来源:CRFOptimizableByEntropyRegularization.java

示例2: gatherConstraints

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
protected void gatherConstraints() {
	// Set the constraints by running forward-backward with the *output
	// label sequence provided*, thus restricting it to only those
	// paths that agree with the label sequence.
	// Zero the constraints[]
	// Reset constraints[] to zero before we fill them again
	assert (constraints.structureMatches(crf.parameters));
	constraints.zero();

	for (Instance instance : sourceInstances) {
		FeatureVectorSequence input = (FeatureVectorSequence) instance
				.getData();
		FeatureSequence output = (FeatureSequence) instance.getTarget();
		double instanceWeight = sourceInstances.getInstanceWeight(instance);
		// System.out.println
		// ("Constraint-gathering on instance "+i+" of "+ilist.size());
		Transducer.Incrementor incrementor = instanceWeight == 1.0 ? constraints.new Incrementor()
				: constraints.new WeightedIncrementor(instanceWeight);
		new SumLatticeDefault(this.crf, input, output, incrementor);
	}
	// System.out.println ("testing Value and Gradient");
	// TestOptimizable.testValueAndGradientCurrentParameters (this);
}
 
开发者ID:siqil,项目名称:udaner,代码行数:24,代码来源:CRFOptimizableByLikelihoodAndExpectationDistance.java

示例3: getSourceExpectations

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
protected void getSourceExpectations() {
	assert (sourceExpectations.structureMatches(crf.parameters));
	sourceExpectations.zero();

	for (Instance instance : sourceInstances) {
		FeatureVectorSequence input = (FeatureVectorSequence) instance
				.getData();
		FeatureSequence output = (FeatureSequence) instance.getTarget();
		double instanceWeight = sourceInstances.getInstanceWeight(instance);
		Transducer.Incrementor incrementor = instanceWeight == 1.0 ? sourceExpectations.new Incrementor()
				: sourceExpectations.new WeightedIncrementor(instanceWeight);
		new SumLatticeDefault(this.crf, input, output, incrementor);
	}
	double factor = 1.0 / sourceInstances.size();
	for (int i = 0; i < sourceExpectations.weights.length; i++) {
		log(sourceExpectations.weights[i], factor);
	}
}
 
开发者ID:siqil,项目名称:udaner,代码行数:19,代码来源:CRFOptimizableByLikelihoodAndExpectationDistance.java

示例4: getTargetExpectations

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
protected void getTargetExpectations() {
	// Reset expectations to zero before we fill them again
	assert (targetExpectations.structureMatches(crf.parameters));
	targetExpectations.zero();

	// Calculate the value of each instance, and also fill in expectations
	for (Instance instance : targetInstances) {
		FeatureVectorSequence input = (FeatureVectorSequence) instance
				.getData();
		double instanceWeight = targetInstances.getInstanceWeight(instance);
		Transducer.Incrementor incrementor = instanceWeight == 1.0 ? targetExpectations.new Incrementor()
				: targetExpectations.new WeightedIncrementor(instanceWeight);
		new SumLatticeDefault(this.crf, input, null, incrementor);
	}
	double factor = 1.0 / targetInstances.size();
	for (int i = 0; i < targetExpectations.weights.length; i++) {
		log(targetExpectations.weights[i], factor);
	}
}
 
开发者ID:siqil,项目名称:udaner,代码行数:20,代码来源:CRFOptimizableByLikelihoodAndExpectationDistance.java

示例5: annotate

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public List<ReferenceLineAnnotation> annotate(List<String> linesWithLayout) throws IOException, AnalysisException {

        StringBuilder lineStringBuilder = new StringBuilder();
        for (String line : linesWithLayout) {
            lineStringBuilder.append(line).append(System.lineSeparator());
        }
        BufferedReader lineReader = new BufferedReader(new StringReader(lineStringBuilder.toString()));

        InstanceList inputInstances = new InstanceList(this.pipe);
        inputInstances.addThruPipe(new LineGroupIterator(lineReader, Pattern.compile("^\\s*$"), true));
        lineReader.close();

        List<ReferenceLineAnnotation> referenceLineAnnotations = new ArrayList<ReferenceLineAnnotation>();

        for (Instance instance : inputInstances) {
            @SuppressWarnings("unchecked")
            Sequence<String> inputSequence = (Sequence<String>) instance.getData();
            SumLatticeDefault latticeDefault = new SumLatticeDefault(this.crf, inputSequence);
            Alphabet outputAlphabet = this.crf.getOutputAlphabet();
            if (linesWithLayout.size() != inputSequence.size()) {
                throw new IllegalStateException("linesWithLayout.size()!=inputSequence.size()");
            }
            for (int i = 0; i < inputSequence.size(); i++) {
                ReferenceLineAnnotation referenceLineAnnotation = new ReferenceLineAnnotation(
                        linesWithLayout.get(i).split("\\t")[0]);
                for (int j = 1; j <= outputAlphabet.size(); j++) {
                    State state = this.crf.getState(j);
                    referenceLineAnnotation.addAnnotation(state.getName(),
                            latticeDefault.getGammaProbability(i + 1, state));
                }
                referenceLineAnnotations.add(referenceLineAnnotation);
            }
        }
        return referenceLineAnnotations;
    }
 
开发者ID:exciteproject,项目名称:refext,代码行数:36,代码来源:ReferenceLineAnnotator.java

示例6: SumLatticeTask

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public SumLatticeTask(CRF crf, InstanceList data, BitSet instancesWithConstraints, int start, int end) {
  this.crf = crf;
  this.data = data;
  this.start = start;
  this.end = end;
  this.lattices = new ArrayList<SumLatticeDefault>();
  this.instancesWithConstraints = instancesWithConstraints;
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:9,代码来源:CRFOptimizableByGE.java

示例7: call

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public Void call() throws Exception {
  for (int ii = start; ii < end; ii++) {
    if (instancesWithConstraints.get(ii)) {
      Instance instance = data.get(ii);
      SumLatticeDefault lattice = new SumLatticeDefault(
        this.crf, (FeatureVectorSequence)instance.getData(),
        null, null, true);
      lattices.add(lattice);
    }
    else {
      lattices.add(null);
    }
  }
  return null;
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:16,代码来源:CRFOptimizableByGE.java

示例8: testIncrement

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public void testIncrement ()
{
	transducer.setTrainable (true);
	SumLatticeDefault lattice = new SumLatticeDefault (transducer, seq); // used to have third argument: true
	double oldWeight = lattice.getTotalWeight ();
	System.out.println ("State 0 transition estimator");
	Multinomial.Estimator est
		= ((FeatureTransducer.State)transducer.getState(0)).getTransitionEstimator();
	est.print();
	assertTrue (est.getCount(0) == 2.0);
	assertTrue (est.getCount(1) == 1.0);
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:13,代码来源:TestFeatureTransducer.java

示例9: testXis

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public void testXis() {
	Pipe p = makeSpacePredictionPipe();

	InstanceList instances = new InstanceList(p);
	instances.addThruPipe(new ArrayIterator(data));

	CRF crf1 = new CRF(p, null);
	crf1.addFullyConnectedStatesForLabels();
	CRFTrainerByLabelLikelihood crft1 = new CRFTrainerByLabelLikelihood(
			crf1);
	crft1.train(instances, 10); // Let's get some parameters

	Instance inst = instances.get(0);
	Sequence input = (Sequence) inst.getData();
	SumLatticeDefault lattice = new SumLatticeDefault(crf1, input,
			(Sequence) inst.getTarget(), null, true);
	for (int ip = 0; ip < lattice.length() - 1; ip++) {
		for (int i = 0; i < crf1.numStates(); i++) {
			Transducer.State state = crf1.getState(i);
			Transducer.TransitionIterator it = state.transitionIterator(
					input, ip);
			double gamma = lattice.getGammaProbability(ip, state);
			double xiSum = 0;
			while (it.hasNext()) {
				Transducer.State dest = it.nextState();
				double xi = lattice.getXiProbability(ip, state, dest);
				xiSum += xi;
			}
			assertEquals(gamma, xiSum, 1e-5);
		}
	}
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:33,代码来源:TestCRF.java

示例10: getStatistics

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
private void getStatistics(CRF crf, Instance inst,
		Map<Instance, Double> entropyMap, Map<Instance, Double> probMap,
		boolean setTarget) {
	FeatureVectorSequence input = (FeatureVectorSequence) inst.getData();
	MaxLatticeDefault maxLattice = new MaxLatticeDefault(crf, input);
	Sequence output = maxLattice.bestOutputSequence();
	double labeled = new SumLatticeDefault(crf, input, output)
			.getTotalWeight();
	SumLattice lattice = new SumLatticeDefault(crf, input, true);
	double unlabeled = lattice.getTotalWeight();
	EntropyLattice entropyLattice = new EntropyLattice(input,
			lattice.getGammas(), lattice.getXis(), crf, null, 1);
	double entropy = -entropyLattice.getEntropy();
	double prob = Math.exp(labeled - unlabeled);
	entropyMap.put(inst, entropy);
	probMap.put(inst, prob);
	if (setTarget) {
		inst.unLock();
		int n = output.size();
		LabelSequence seq = new LabelSequence(
				(LabelAlphabet) crf.getOutputAlphabet(), n);
		for (int i = 0; i < output.size(); i++) {
			seq.add(output.get(i));
		}
		inst.setTarget(seq);
		inst.lock();
	}
}
 
开发者ID:siqil,项目名称:udaner,代码行数:29,代码来源:CRFTrainerByBootstrapping.java

示例11: ignoretestIncrement

import cc.mallet.fst.SumLatticeDefault; //导入依赖的package包/类
public void ignoretestIncrement ()
{
	transducer.setTrainable (true);
	SumLatticeDefault lattice = new SumLatticeDefault (transducer, seq); // used to have third argument: true
	double oldWeight = lattice.getTotalWeight ();
	System.out.println ("State 0 transition estimator");
	Multinomial.Estimator est
		= ((FeatureTransducer.State)transducer.getState(0)).getTransitionEstimator();
	est.print();
	assertTrue (est.getCount(0) == 2.0);
	assertTrue (est.getCount(1) == 1.0);
}
 
开发者ID:cmoen,项目名称:mallet,代码行数:13,代码来源:TestFeatureTransducer.java


注:本文中的cc.mallet.fst.SumLatticeDefault类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。