当前位置: 首页>>代码示例>>Golang>>正文


Golang Float.Sign方法代码示例

本文整理汇总了Golang中math/big.Float.Sign方法的典型用法代码示例。如果您正苦于以下问题:Golang Float.Sign方法的具体用法?Golang Float.Sign怎么用?Golang Float.Sign使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在math/big.Float的用法示例。


在下文中一共展示了Float.Sign方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。

示例1: Sqrt

// Compute the square root of n using Newton's Method. We start with
// an initial estimate for sqrt(n), and then iterate
//     x_{i+1} = 1/2 * ( x_i + (n / x_i) )
// Result is returned in x
func (e *Pslq) Sqrt(n, x *big.Float) {
	if n == x {
		panic("need distinct input and output")
	}
	if n.Sign() == 0 {
		x.Set(n)
		return
	} else if n.Sign() < 0 {
		panic("Sqrt of negative number")
	}
	prec := n.Prec()

	// Use the floating point square root as initial estimate
	nFloat64, _ := n.Float64()
	x.SetPrec(prec).SetFloat64(math.Sqrt(nFloat64))

	// We use t as a temporary variable. There's no need to set its precision
	// since big.Float values with unset (== 0) precision automatically assume
	// the largest precision of the arguments when used as the result (receiver)
	// of a big.Float operation.
	var t big.Float

	// Iterate.
	for {
		t.Quo(n, x)        // t = n / x_i
		t.Add(x, &t)       // t = x_i + (n / x_i)
		t.Mul(&e.half, &t) // x_{i+1} = 0.5 * t
		if x.Cmp(&t) == 0 {
			// Exit loop if no change to result
			break
		}
		x.Set(&t)
	}
}
开发者ID:ncw,项目名称:pslq,代码行数:38,代码来源:pslq.go

示例2: makeFloat

func makeFloat(x *big.Float) Value {
	// convert -0
	if x.Sign() == 0 {
		return floatVal0
	}
	return floatVal{x}
}
开发者ID:2thetop,项目名称:go,代码行数:7,代码来源:value.go

示例3: BigCommaf

// BigCommaf produces a string form of the given big.Float in base 10
// with commas after every three orders of magnitude.
func BigCommaf(v *big.Float) string {
	buf := &bytes.Buffer{}
	if v.Sign() < 0 {
		buf.Write([]byte{'-'})
		v.Abs(v)
	}

	comma := []byte{','}

	parts := strings.Split(v.Text('f', -1), ".")
	pos := 0
	if len(parts[0])%3 != 0 {
		pos += len(parts[0]) % 3
		buf.WriteString(parts[0][:pos])
		buf.Write(comma)
	}
	for ; pos < len(parts[0]); pos += 3 {
		buf.WriteString(parts[0][pos : pos+3])
		buf.Write(comma)
	}
	buf.Truncate(buf.Len() - 1)

	if len(parts) > 1 {
		buf.Write([]byte{'.'})
		buf.WriteString(parts[1])
	}
	return buf.String()
}
开发者ID:ChongFeng,项目名称:beats,代码行数:30,代码来源:commaf.go

示例4: floatSqrt

// floatSqrt computes the square root of x using Newton's method.
// TODO: Use a better algorithm such as the one from math/sqrt.go.
func floatSqrt(c Context, x *big.Float) *big.Float {
	switch x.Sign() {
	case -1:
		Errorf("square root of negative number")
	case 0:
		return newFloat(c)
	}

	// Each iteration computes
	// 	z = z - (z²-x)/2z
	// z holds the result so far. A good starting point is to halve the exponent.
	// Experiments show we converge in only a handful of iterations.
	z := newFloat(c)
	exp := x.MantExp(z)
	z.SetMantExp(z, exp/2)

	// Intermediates, allocated once.
	zSquared := newFloat(c)
	num := newFloat(c)
	den := newFloat(c)

	for loop := newLoop(c.Config(), "sqrt", x, 1); ; {
		zSquared.Mul(z, z)
		num.Sub(zSquared, x)
		den.Mul(floatTwo, z)
		num.Quo(num, den)
		z.Sub(z, num)
		if loop.done(z) {
			break
		}
	}
	return z
}
开发者ID:db47h,项目名称:ivy,代码行数:35,代码来源:sqrt.go

示例5: floatLog

// floatLog computes natural log(x) using the Maclaurin series for log(1-x).
func floatLog(x *big.Float) *big.Float {
	if x.Sign() <= 0 {
		Errorf("log of non-positive value")
	}
	// The series wants x < 1, and log 1/x == -log x, so exploit that.
	invert := false
	if x.Cmp(floatOne) > 0 {
		invert = true
		xx := newF()
		xx.Quo(floatOne, x)
		x = xx
	}

	// x = mantissa * 2**exp, and 0.5 <= mantissa < 1.
	// So log(x) is log(mantissa)+exp*log(2), and 1-x will be
	// between 0 and 0.5, so the series for 1-x will converge well.
	// (The series converges slowly in general.)
	mantissa := newF()
	exp2 := x.MantExp(mantissa)
	exp := newF().SetInt64(int64(exp2))
	exp.Mul(exp, floatLog2)
	if invert {
		exp.Neg(exp)
	}

	// y = 1-x (whereupon x = 1-y and we use that in the series).
	y := newF().SetInt64(1)
	y.Sub(y, mantissa)

	// The Maclaurin series for log(1-y) == log(x) is: -y - y²/2 - y³/3 ...

	yN := newF().Set(y)
	term := newF()
	n := newF().Set(floatOne)
	z := newF()

	// This is the slowest-converging series, so we add a factor of ten to the cutoff.
	// Only necessary when FloatPrec is at or beyond constPrecisionInBits.
	loop := newLoop("log", y, 40)
	for {
		term.Set(yN)
		term.Quo(term, n)
		z.Sub(z, term)
		if loop.terminate(z) {
			break
		}
		// Advance y**index (multiply by y).
		yN.Mul(yN, y)
		n.Add(n, floatOne)
	}

	if invert {
		z.Neg(z)
	}
	z.Add(z, exp)

	return z
}
开发者ID:nathangrigg,项目名称:ivy,代码行数:59,代码来源:log.go

示例6: NearestInt

// NearestInt set res to the nearest integer to x
func (e *Pslq) NearestInt(x *big.Float, res *big.Int) {
	prec := x.Prec()
	var tmp big.Float
	tmp.SetPrec(prec)
	if x.Sign() >= 0 {
		tmp.Add(x, &e.half)
	} else {
		tmp.Sub(x, &e.half)
	}
	tmp.Int(res)
}
开发者ID:ncw,项目名称:pslq,代码行数:12,代码来源:pslq.go

示例7: floatSin

// floatSin computes sin(x) using argument reduction and a Taylor series.
func floatSin(c Context, x *big.Float) *big.Float {
	negate := false
	if x.Sign() < 0 {
		x.Neg(x)
		negate = true
	}
	twoPiReduce(c, x)

	// sin(x) = x - x³/3! + x⁵/5! - ...
	// First term to compute in loop will be -x³/3!
	factorial := newFloat(c).SetInt64(6)

	result := sincos("sin", c, 3, x, newFloat(c).Set(x), 3, factorial)

	if negate {
		result.Neg(result)
	}

	return result
}
开发者ID:ghost-dog,项目名称:ivy,代码行数:21,代码来源:sin.go

示例8: floatSqrt

// floatSqrt computes the square root of x using Newton's method.
// TODO: Use a better algorithm such as the one from math/sqrt.go.
func floatSqrt(x *big.Float) *big.Float {
	switch x.Sign() {
	case -1:
		Errorf("square root of negative number")
	case 0:
		return newF()
	}

	// Each iteration computes
	// 	z = z - (z²-x)/2z
	// delta holds the difference between the result
	// this iteration and the previous. The loop stops
	// when it hits zero.

	// z holds the result so far. A good starting point is to halve the exponent.
	// Experiments show we converge in only a handful of iterations.
	z := newF()
	exp := x.MantExp(z)
	z.SetMantExp(z, exp/2)

	// Intermediates, allocated once.
	zSquared := newF()
	num := newF()
	den := newF()

	loop := newLoop("sqrt", x, 1)
	for {
		zSquared.Mul(z, z)
		num.Sub(zSquared, x)
		den.Mul(floatTwo, z)
		num.Quo(num, den)
		z.Sub(z, num)
		if loop.terminate(z) {
			break
		}
	}
	return z
}
开发者ID:nathangrigg,项目名称:ivy,代码行数:40,代码来源:sqrt.go

示例9: Sqrt

// Sqrt returns a big.Float representation of the square root of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns ±0 when z = ±0, and +Inf when z =
// +Inf.
func Sqrt(z *big.Float) *big.Float {

	// panic on negative z
	if z.Sign() == -1 {
		panic("Sqrt: argument is negative")
	}

	// √±0 = ±0
	if z.Sign() == 0 {
		return big.NewFloat(float64(z.Sign()))
	}

	// √+Inf  = +Inf
	if z.IsInf() {
		return big.NewFloat(math.Inf(+1))
	}

	// Compute √(a·2**b) as
	//   √(a)·2**b/2       if b is even
	//   √(2a)·2**b/2      if b > 0 is odd
	//   √(0.5a)·2**b/2    if b < 0 is odd
	//
	// The difference in the odd exponent case is due to the fact that
	// exp/2 is rounded in different directions when exp is negative.
	mant := new(big.Float)
	exp := z.MantExp(mant)
	switch exp % 2 {
	case 1:
		mant.Mul(big.NewFloat(2), mant)
	case -1:
		mant.Mul(big.NewFloat(0.5), mant)
	}

	// Solving x² - z = 0 directly requires a Quo call, but it's
	// faster for small precisions.
	//
	// Solving 1/x² - z = 0 avoids the Quo call and is much faster for
	// high precisions.
	//
	// Use sqrtDirect for prec <= 128 and sqrtInverse for prec > 128.
	var x *big.Float
	if z.Prec() <= 128 {
		x = sqrtDirect(mant)
	} else {
		x = sqrtInverse(mant)
	}

	// re-attach the exponent and return
	return x.SetMantExp(x, exp/2)

}
开发者ID:ALTree,项目名称:floats,代码行数:55,代码来源:sqrt.go

示例10: Exp

// Exp returns a big.Float representation of exp(z). Precision is
// the same as the one of the argument. The function returns +Inf
// when z = +Inf, and 0 when z = -Inf.
func Exp(z *big.Float) *big.Float {

	// exp(0) == 1
	if z.Sign() == 0 {
		return big.NewFloat(1).SetPrec(z.Prec())
	}

	// Exp(+Inf) = +Inf
	if z.IsInf() && z.Sign() > 0 {
		return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
	}

	// Exp(-Inf) = 0
	if z.IsInf() && z.Sign() < 0 {
		return big.NewFloat(0).SetPrec(z.Prec())
	}

	guess := new(big.Float)

	// try to get initial estimate using IEEE-754 math
	zf, _ := z.Float64()
	if zfs := math.Exp(zf); zfs == math.Inf(+1) || zfs == 0 {
		// too big or too small for IEEE-754 math,
		// perform argument reduction using
		//     e^{2z} = (e^z)²
		halfZ := new(big.Float).Mul(z, big.NewFloat(0.5))
		halfExp := Exp(halfZ.SetPrec(z.Prec() + 64))
		return new(big.Float).Mul(halfExp, halfExp).SetPrec(z.Prec())
	} else {
		// we got a nice IEEE-754 estimate
		guess.SetFloat64(zfs)
	}

	// f(t)/f'(t) = t*(log(t) - z)
	f := func(t *big.Float) *big.Float {
		x := new(big.Float)
		x.Sub(Log(t), z)
		return x.Mul(x, t)
	}

	x := newton(f, guess, z.Prec())

	return x
}
开发者ID:ALTree,项目名称:floats,代码行数:47,代码来源:exp.go

示例11: Pow

// Pow returns a big.Float representation of z**w. Precision is the same as the one
// of the first argument. The function panics when z is negative.
func Pow(z *big.Float, w *big.Float) *big.Float {

	if z.Sign() < 0 {
		panic("Pow: negative base")
	}

	// Pow(z, 0) = 1.0
	if w.Sign() == 0 {
		return big.NewFloat(1).SetPrec(z.Prec())
	}

	// Pow(z, 1) = z
	// Pow(+Inf, n) = +Inf
	if w.Cmp(big.NewFloat(1)) == 0 || z.IsInf() {
		return new(big.Float).Copy(z)
	}

	// Pow(z, -w) = 1 / Pow(z, w)
	if w.Sign() < 0 {
		x := new(big.Float)
		zExt := new(big.Float).Copy(z).SetPrec(z.Prec() + 64)
		wNeg := new(big.Float).Neg(w)
		return x.Quo(big.NewFloat(1), Pow(zExt, wNeg)).SetPrec(z.Prec())
	}

	// w integer fast path
	if w.IsInt() {
		wi, _ := w.Int64()
		return powInt(z, int(wi))
	}

	// compute w**z as exp(z log(w))
	x := new(big.Float).SetPrec(z.Prec() + 64)
	logZ := Log(new(big.Float).Copy(z).SetPrec(z.Prec() + 64))
	x.Mul(w, logZ)
	x = Exp(x)
	return x.SetPrec(z.Prec())

}
开发者ID:ALTree,项目名称:floats,代码行数:41,代码来源:pow.go

示例12: Log

// Log returns a big.Float representation of the natural logarithm of
// z. Precision is the same as the one of the argument. The function
// panics if z is negative, returns -Inf when z = 0, and +Inf when z =
// +Inf
func Log(z *big.Float) *big.Float {

	// panic on negative z
	if z.Sign() == -1 {
		panic("Log: argument is negative")
	}

	// Log(0) = -Inf
	if z.Sign() == 0 {
		return big.NewFloat(math.Inf(-1)).SetPrec(z.Prec())
	}

	prec := z.Prec() + 64 // guard digits

	one := big.NewFloat(1).SetPrec(prec)
	two := big.NewFloat(2).SetPrec(prec)
	four := big.NewFloat(4).SetPrec(prec)

	// Log(1) = 0
	if z.Cmp(one) == 0 {
		return big.NewFloat(0).SetPrec(z.Prec())
	}

	// Log(+Inf) = +Inf
	if z.IsInf() {
		return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec())
	}

	x := new(big.Float).SetPrec(prec)

	// if 0 < z < 1 we compute log(z) as -log(1/z)
	var neg bool
	if z.Cmp(one) < 0 {
		x.Quo(one, z)
		neg = true
	} else {
		x.Set(z)
	}

	// We scale up x until x >= 2**(prec/2), and then we'll be allowed
	// to use the AGM formula for Log(x).
	//
	// Double x until the condition is met, and keep track of the
	// number of doubling we did (needed to scale back later).

	lim := new(big.Float)
	lim.SetMantExp(two, int(prec/2))

	k := 0
	for x.Cmp(lim) < 0 {
		x.Mul(x, x)
		k++
	}

	// Compute the natural log of x using the fact that
	//     log(x) = π / (2 * AGM(1, 4/x))
	// if
	//     x >= 2**(prec/2),
	// where prec is the desired precision (in bits)
	pi := pi(prec)
	agm := agm(one, x.Quo(four, x)) // agm = AGM(1, 4/x)

	x.Quo(pi, x.Mul(two, agm)) // reuse x, we don't need it

	if neg {
		x.Neg(x)
	}

	// scale the result back multiplying by 2**-k
	// reuse lim to reduce allocations.
	x.Mul(x, lim.SetMantExp(one, -k))

	return x.SetPrec(z.Prec())
}
开发者ID:ALTree,项目名称:floats,代码行数:78,代码来源:log.go

示例13: floatAtan

// floatAtan computes atan(x) using a Taylor series. There are two series,
// one for |x| < 1 and one for larger values.
func floatAtan(c Context, x *big.Float) *big.Float {
	// atan(-x) == -atan(x). Do this up top to simplify the Euler crossover calculation.
	if x.Sign() < 0 {
		z := newFloat(c).Set(x)
		z = floatAtan(c, z.Neg(z))
		return z.Neg(z)
	}

	// The series converge very slowly near 1. atan 1.00001 takes over a million
	// iterations at the default precision. But there is hope, an Euler identity:
	//	atan(x) = atan(y) + atan((x-y)/(1+xy))
	// Note that y is a free variable. If x is near 1, we can use this formula
	// to push the computation to values that converge faster. Because
	//	tan(π/8) = √2 - 1, or equivalently atan(√2 - 1) == π/8
	// we choose y = √2 - 1 and then we only need to calculate one atan:
	//	atan(x) = π/8 + atan((x-y)/(1+xy))
	// Where do we cross over? This version converges significantly faster
	// even at 0.5, but we must be careful that (x-y)/(1+xy) never approaches 1.
	// At x = 0.5, (x-y)/(1+xy) is 0.07; at x=1 it is 0.414214; at x=1.5 it is
	// 0.66, which is as big as we dare go. With 256 bits of precision and a
	// crossover at 0.5, here are the number of iterations done by
	//	atan .1*iota 20
	// 0.1 39, 0.2 55, 0.3 73, 0.4 96, 0.5 126, 0.6 47, 0.7 59, 0.8 71, 0.9 85, 1.0 99, 1.1 116, 1.2 38, 1.3 44, 1.4 50, 1.5 213, 1.6 183, 1.7 163, 1.8 147, 1.9 135, 2.0 125
	tmp := newFloat(c).Set(floatOne)
	tmp.Sub(tmp, x)
	tmp.Abs(tmp)
	if tmp.Cmp(newFloat(c).SetFloat64(0.5)) < 0 {
		z := newFloat(c).Set(floatPi)
		z.Quo(z, newFloat(c).SetInt64(8))
		y := floatSqrt(c, floatTwo)
		y.Sub(y, floatOne)
		num := newFloat(c).Set(x)
		num.Sub(num, y)
		den := newFloat(c).Set(x)
		den = den.Mul(den, y)
		den = den.Add(den, floatOne)
		z = z.Add(z, floatAtan(c, num.Quo(num, den)))
		return z
	}

	if x.Cmp(floatOne) > 0 {
		return floatAtanLarge(c, x)
	}

	// This is the series for small values |x| <  1.
	// asin(x) = x - x³/3 + x⁵/5 - x⁷/7 + ...
	// First term to compute in loop will be x

	n := newFloat(c)
	term := newFloat(c)
	xN := newFloat(c).Set(x)
	xSquared := newFloat(c).Set(x)
	xSquared.Mul(x, x)
	z := newFloat(c)

	// n goes up by two each loop.
	for loop := newLoop(c.Config(), "atan", x, 4); ; {
		term.Set(xN)
		term.Quo(term, n.SetUint64(2*loop.i+1))
		z.Add(z, term)
		xN.Neg(xN)

		if loop.done(z) {
			break
		}
		// xN *= x², becoming x**(n+2).
		xN.Mul(xN, xSquared)
	}

	return z
}
开发者ID:ghost-dog,项目名称:ivy,代码行数:73,代码来源:asin.go

示例14: String

func (f BigFloat) String() string {
	var mant big.Float
	exp := f.Float.MantExp(&mant)
	positive := 1
	if exp < 0 {
		positive = 0
		exp = -exp
	}
	verb, prec := byte('g'), 12
	format := conf.Format()
	if format != "" {
		v, p, ok := conf.FloatFormat()
		if ok {
			verb, prec = v, p
		}
	}
	// Printing huge floats can be very slow using
	// big.Float's native methods; see issue #11068.
	// For example 1e5000000 takes a minute of CPU time just
	// to print. The code below is instantaneous, by rescaling
	// first. It is however less feature-complete.
	// (Big ints are problematic too, but if you print 1e50000000
	// as an integer you probably won't be surprised it's slow.)

	if fastFloatPrint && exp > 10000 {
		// We always use %g to print the fraction, and it will
		// never have an exponent, but if the format is %E we
		// need to use a capital E.
		eChar := 'e'
		if verb == 'E' || verb == 'G' {
			eChar = 'E'
		}
		fexp := newF().SetInt64(int64(exp))
		fexp.Mul(fexp, floatLog2)
		fexp.Quo(fexp, floatLog10)
		// We now have a floating-point base 10 exponent.
		// Break into the integer part and the fractional part.
		// The integer part is what we will show.
		// The 10**(fractional part) will be multiplied back in.
		iexp, _ := fexp.Int(nil)
		fraction := fexp.Sub(fexp, newF().SetInt(iexp))
		// Now compute 10**(fractional part).
		// Fraction is in base 10. Move it to base e.
		fraction.Mul(fraction, floatLog10)
		scale := exponential(fraction)
		if positive > 0 {
			mant.Mul(&mant, scale)
		} else {
			mant.Quo(&mant, scale)
		}
		ten := newF().SetInt64(10)
		i64exp := iexp.Int64()
		// For numbers not too far from one, print without the E notation.
		// Shouldn't happen (exp must be large to get here) but just
		// in case, we keep this around.
		if -4 <= i64exp && i64exp <= 11 {
			if i64exp > 0 {
				for i := 0; i < int(i64exp); i++ {
					mant.Mul(&mant, ten)
				}
			} else {
				for i := 0; i < int(-i64exp); i++ {
					mant.Quo(&mant, ten)
				}
			}
			return fmt.Sprintf("%g\n", &mant)
		} else {
			sign := ""
			if mant.Sign() < 0 {
				sign = "-"
				mant.Neg(&mant)
			}
			// If it has a leading zero, rescale.
			digits := mant.Text('g', prec)
			for digits[0] == '0' {
				mant.Mul(&mant, ten)
				if positive > 0 {
					i64exp--
				} else {
					i64exp++
				}
				digits = mant.Text('g', prec)
			}
			return fmt.Sprintf("%s%s%c%c%d", sign, digits, eChar, "-+"[positive], i64exp)
		}
	}
	return f.Float.Text(verb, prec)
}
开发者ID:zzn01,项目名称:ivy,代码行数:88,代码来源:bigfloat.go

示例15: Run

// Given a vector of real numbers x = [x_0, x_1, ..., x_n], this
// uses the PSLQ algorithm to find a list of integers
// [c_0, c_1, ..., c_n] such that
//
//     |c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n| < tolerance
//
// and such that max |c_k| < maxcoeff. If no such vector exists, Pslq
// returns one of the errors in this package depending on whether it
// has run out of iterations, precision or explored up to the
// maxcoeff. The tolerance defaults to 3/4 of the precision.
//
// This is a fairly direct translation of the pseudocode given by
// David Bailey, "The PSLQ Integer Relation Algorithm":
// http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
//
// If a result is returned, the first non-zero element will be positive
func (e *Pslq) Run(x []big.Float) ([]big.Int, error) {
	n := len(x)
	if n <= 1 {
		return nil, ErrorBadArguments
	}

	// At too low precision, the algorithm becomes meaningless
	if e.prec < 64 {
		return nil, ErrorPrecisionTooLow
	}

	if e.verbose && int(e.prec)/max(2, int(n)) < 5 {
		log.Printf("Warning: precision for PSLQ may be too low")
	}

	if e.verbose {
		log.Printf("PSLQ using prec %d and tol %g", e.prec, e.tol)
	}

	if e.tol.Sign() == 0 {
		return nil, ErrorToleranceRoundsToZero
	}

	// Temporary variables
	tmp0 := new(big.Float).SetPrec(e.prec)
	tmp1 := new(big.Float).SetPrec(e.prec)
	bigTmp := new(big.Int)

	// Convert to use 1-based indexing to allow us to be
	// consistent with Bailey's indexing.
	xNew := make([]big.Float, len(x)+1)
	minx := new(big.Float).SetPrec(e.prec)
	minxFirst := true
	for i, xk := range x {
		p := &xNew[i+1]
		p.Set(&xk)
		tmp0.Abs(p)
		if minxFirst || tmp0.Cmp(minx) < 0 {
			minxFirst = false
			minx.Set(tmp0)
		}
	}
	x = xNew
	if debug {
		printVector("x", x)
	}

	// Sanity check on magnitudes
	if minx.Sign() == 0 {
		return nil, ErrorZeroArguments
	}
	tmp1.SetInt64(128)
	tmp0.Quo(&e.tol, tmp1)
	if minx.Cmp(tmp0) < 0 { //  minx < tol/128
		return nil, ErrorArgumentTooSmall
	}

	tmp0.SetInt64(4)
	tmp1.SetInt64(3)
	tmp0.Quo(tmp0, tmp1)
	var γ big.Float
	e.Sqrt(tmp0, &γ) // sqrt(4<<prec)/3)
	if debug {
		fmt.Printf("γ = %f\n", &γ)
	}
	A := newBigIntMatrix(n+1, n+1)
	B := newBigIntMatrix(n+1, n+1)
	H := newMatrix(n+1, n+1)
	// Initialization Step 1
	//
	// Set the n×n matrices A and B to the identity.
	for i := 1; i <= n; i++ {
		for j := 1; j <= n; j++ {
			if i == j {
				A[i][j].SetInt64(1)
				B[i][j].SetInt64(1)
			} else {
				A[i][j].SetInt64(0)
				B[i][j].SetInt64(0)
			}
			H[i][j].SetInt64(0)
		}
	}
	if debug {
//.........这里部分代码省略.........
开发者ID:ncw,项目名称:pslq,代码行数:101,代码来源:pslq.go


注:本文中的math/big.Float.Sign方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。