本文整理汇总了Golang中math/big.Float.SetInt64方法的典型用法代码示例。如果您正苦于以下问题:Golang Float.SetInt64方法的具体用法?Golang Float.SetInt64怎么用?Golang Float.SetInt64使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类math/big.Float
的用法示例。
在下文中一共展示了Float.SetInt64方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Decode
func (bed BinaryVarintEncoderDecoder) Decode(r io.Reader, n *big.Float) error {
var isInteger int8
var f float64
var exponent int32
n.SetUint64(0)
if err := binary.Read(r, binary.BigEndian, &isInteger); err != nil {
return err
}
if isInteger <= 0 {
var x int64
var err error
if x, err = binary.ReadVarint(miniByteReader{r}); err != nil {
return err
}
n.SetInt64(x)
n.SetPrec(ENCODER_DECODER_PREC)
return nil
} else {
if err := binary.Read(r, binary.BigEndian, &f); err != nil {
return err
}
if err := binary.Read(r, binary.BigEndian, &exponent); err != nil {
return err
}
bed.tmp.SetFloat64(f)
bed.tmp.SetPrec(ENCODER_DECODER_PREC)
n.SetMantExp(bed.tmp, int(exponent))
return nil
}
}
示例2: mandelbrotFloat
func mandelbrotFloat(a, b *big.Float) color.Color {
var x, y, nx, ny, x2, y2, f2, f4, r2, tmp big.Float
f2.SetInt64(2)
f4.SetInt64(4)
x.SetInt64(0)
y.SetInt64(0)
defer func() { recover() }()
for n := uint8(0); n < iterations; n++ {
// Not update x2 and y2
// because they are already updated in the previous loop
nx.Sub(&x2, &y2)
nx.Add(&nx, a)
tmp.Mul(&x, &y)
ny.Mul(&f2, &tmp)
ny.Add(&ny, b)
x.Set(&nx)
y.Set(&ny)
x2.Mul(&x, &x)
y2.Mul(&y, &y)
r2.Add(&x2, &y2)
if r2.Cmp(&f4) > 0 {
return color.Gray{255 - contrast*n}
}
}
return color.Black
}
示例3: ExampleFloat_Add
func ExampleFloat_Add() {
// Operating on numbers of different precision.
var x, y, z big.Float
x.SetInt64(1000) // x is automatically set to 64bit precision
y.SetFloat64(2.718281828) // y is automatically set to 53bit precision
z.SetPrec(32)
z.Add(&x, &y)
fmt.Printf("x = %s (%s, prec = %d, acc = %s)\n", &x, x.Format('p', 0), x.Prec(), x.Acc())
fmt.Printf("y = %s (%s, prec = %d, acc = %s)\n", &y, y.Format('p', 0), y.Prec(), y.Acc())
fmt.Printf("z = %s (%s, prec = %d, acc = %s)\n", &z, z.Format('p', 0), z.Prec(), z.Acc())
// Output:
// x = 1000 (0x.fap10, prec = 64, acc = Exact)
// y = 2.718281828 (0x.adf85458248cd8p2, prec = 53, acc = Exact)
// z = 1002.718282 (0x.faadf854p10, prec = 32, acc = Below)
}
示例4: Run
// Given a vector of real numbers x = [x_0, x_1, ..., x_n], this
// uses the PSLQ algorithm to find a list of integers
// [c_0, c_1, ..., c_n] such that
//
// |c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n| < tolerance
//
// and such that max |c_k| < maxcoeff. If no such vector exists, Pslq
// returns one of the errors in this package depending on whether it
// has run out of iterations, precision or explored up to the
// maxcoeff. The tolerance defaults to 3/4 of the precision.
//
// This is a fairly direct translation of the pseudocode given by
// David Bailey, "The PSLQ Integer Relation Algorithm":
// http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
//
// If a result is returned, the first non-zero element will be positive
func (e *Pslq) Run(x []big.Float) ([]big.Int, error) {
n := len(x)
if n <= 1 {
return nil, ErrorBadArguments
}
// At too low precision, the algorithm becomes meaningless
if e.prec < 64 {
return nil, ErrorPrecisionTooLow
}
if e.verbose && int(e.prec)/max(2, int(n)) < 5 {
log.Printf("Warning: precision for PSLQ may be too low")
}
if e.verbose {
log.Printf("PSLQ using prec %d and tol %g", e.prec, e.tol)
}
if e.tol.Sign() == 0 {
return nil, ErrorToleranceRoundsToZero
}
// Temporary variables
tmp0 := new(big.Float).SetPrec(e.prec)
tmp1 := new(big.Float).SetPrec(e.prec)
bigTmp := new(big.Int)
// Convert to use 1-based indexing to allow us to be
// consistent with Bailey's indexing.
xNew := make([]big.Float, len(x)+1)
minx := new(big.Float).SetPrec(e.prec)
minxFirst := true
for i, xk := range x {
p := &xNew[i+1]
p.Set(&xk)
tmp0.Abs(p)
if minxFirst || tmp0.Cmp(minx) < 0 {
minxFirst = false
minx.Set(tmp0)
}
}
x = xNew
if debug {
printVector("x", x)
}
// Sanity check on magnitudes
if minx.Sign() == 0 {
return nil, ErrorZeroArguments
}
tmp1.SetInt64(128)
tmp0.Quo(&e.tol, tmp1)
if minx.Cmp(tmp0) < 0 { // minx < tol/128
return nil, ErrorArgumentTooSmall
}
tmp0.SetInt64(4)
tmp1.SetInt64(3)
tmp0.Quo(tmp0, tmp1)
var γ big.Float
e.Sqrt(tmp0, &γ) // sqrt(4<<prec)/3)
if debug {
fmt.Printf("γ = %f\n", &γ)
}
A := newBigIntMatrix(n+1, n+1)
B := newBigIntMatrix(n+1, n+1)
H := newMatrix(n+1, n+1)
// Initialization Step 1
//
// Set the n×n matrices A and B to the identity.
for i := 1; i <= n; i++ {
for j := 1; j <= n; j++ {
if i == j {
A[i][j].SetInt64(1)
B[i][j].SetInt64(1)
} else {
A[i][j].SetInt64(0)
B[i][j].SetInt64(0)
}
H[i][j].SetInt64(0)
}
}
if debug {
//.........这里部分代码省略.........
示例5: renderFloat
func renderFloat(img *image.RGBA) {
var yminF, ymaxMinF, heightF big.Float
yminF.SetInt64(ymin)
ymaxMinF.SetInt64(ymax - ymin)
heightF.SetInt64(height)
var xminF, xmaxMinF, widthF big.Float
xminF.SetInt64(xmin)
xmaxMinF.SetInt64(xmax - xmin)
widthF.SetInt64(width)
var y, x big.Float
for py := int64(0); py < height; py++ {
// y := float64(py)/height*(ymax-ymin) + ymin
y.SetInt64(py)
y.Quo(&y, &heightF)
y.Mul(&y, &ymaxMinF)
y.Add(&y, &yminF)
for px := int64(0); px < width; px++ {
// x := float64(px)/width*(xmax-xmin) + xmin
x.SetInt64(px)
x.Quo(&x, &widthF)
x.Mul(&x, &xmaxMinF)
x.Add(&x, &xminF)
c := mandelbrotFloat(&x, &y)
if c == nil {
c = color.Black
}
img.Set(int(px), int(py), c)
}
}
}