本文整理汇总了Golang中github.com/cockroachdb/cockroach/roachpb.BatchRequest.Requests方法的典型用法代码示例。如果您正苦于以下问题:Golang BatchRequest.Requests方法的具体用法?Golang BatchRequest.Requests怎么用?Golang BatchRequest.Requests使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/cockroachdb/cockroach/roachpb.BatchRequest
的用法示例。
在下文中一共展示了BatchRequest.Requests方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Send
// Send implements Sender.
// TODO(tschottdorf): We actually don't want to chop EndTransaction off for
// single-range requests (but that happens now since EndTransaction has the
// isAlone flag). Whether it is one or not is unknown right now (you can only
// find out after you've sent to the Range/looked up a descriptor that suggests
// that you're multi-range. In those cases, the wrapped sender should return an
// error so that we split and retry once the chunk which contains
// EndTransaction (i.e. the last one).
func (cs *chunkingSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
if len(ba.Requests) < 1 {
panic("empty batch")
}
parts := ba.Split()
var rplChunks []*roachpb.BatchResponse
for _, part := range parts {
ba.Requests = part
// Increase the sequence counter to account for the fact that while
// chunking, we're likely sending multiple requests to the same Replica.
ba.SetNewRequest()
rpl, err := cs.f(ctx, ba)
if err != nil {
return nil, err
}
// Propagate transaction from last reply to next request. The final
// update is taken and put into the response's main header.
ba.Txn.Update(rpl.Header().Txn)
rplChunks = append(rplChunks, rpl)
}
reply := rplChunks[0]
for _, rpl := range rplChunks[1:] {
reply.Responses = append(reply.Responses, rpl.Responses...)
}
lastHeader := rplChunks[len(rplChunks)-1].BatchResponse_Header
reply.Error = lastHeader.Error
reply.Timestamp = lastHeader.Timestamp
reply.Txn = ba.Txn
return reply, nil
}
示例2: sendAndFill
// sendAndFill is a helper which sends the given batch and fills its results,
// returning the appropriate error which is either from the first failing call,
// or an "internal" error.
func sendAndFill(
send func(roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error),
b *Batch,
) error {
// Errors here will be attached to the results, so we will get them from
// the call to fillResults in the regular case in which an individual call
// fails. But send() also returns its own errors, so there's some dancing
// here to do because we want to run fillResults() so that the individual
// result gets initialized with an error from the corresponding call.
var ba roachpb.BatchRequest
// TODO(tschottdorf): this nonsensical copy is required since (at least at
// the time of writing, the chunking and masking in DistSender operates on
// the original data (as attested to by a whole bunch of test failures).
ba.Requests = append([]roachpb.RequestUnion(nil), b.reqs...)
ba.Header = b.Header
b.response, b.pErr = send(ba)
if b.pErr != nil {
// Discard errors from fillResults.
_ = b.fillResults()
return b.pErr.GoError()
}
if err := b.fillResults(); err != nil {
b.pErr = roachpb.NewError(err)
return err
}
return nil
}
示例3: Send
// Send implements Sender.
// TODO(tschottdorf): We actually don't want to chop EndTransaction off for
// single-range requests (but that happens now since EndTransaction has the
// isAlone flag). Whether it is one or not is unknown right now (you can only
// find out after you've sent to the Range/looked up a descriptor that suggests
// that you're multi-range. In those cases, the wrapped sender should return an
// error so that we split and retry once the chunk which contains
// EndTransaction (i.e. the last one).
func (cs *chunkingSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
if len(ba.Requests) < 1 {
panic("empty batch")
}
// Deterministically create ClientCmdIDs for all parts of the batch if
// a CmdID is already set (otherwise, leave them empty).
var nextID func() roachpb.ClientCmdID
empty := roachpb.ClientCmdID{}
if empty == ba.CmdID {
nextID = func() roachpb.ClientCmdID {
return empty
}
} else {
rng := rand.New(rand.NewSource(ba.CmdID.Random))
id := ba.CmdID
nextID = func() roachpb.ClientCmdID {
curID := id // copy
id.Random = rng.Int63() // adjust for next call
return curID
}
}
parts := ba.Split()
var rplChunks []*roachpb.BatchResponse
for _, part := range parts {
ba.Requests = part
ba.CmdID = nextID()
rpl, err := cs.f(ctx, ba)
if err != nil {
return nil, err
}
// Propagate transaction from last reply to next request. The final
// update is taken and put into the response's main header.
ba.Txn.Update(rpl.Header().Txn)
rplChunks = append(rplChunks, rpl)
}
reply := rplChunks[0]
for _, rpl := range rplChunks[1:] {
reply.Responses = append(reply.Responses, rpl.Responses...)
}
lastHeader := rplChunks[len(rplChunks)-1].BatchResponse_Header
reply.Error = lastHeader.Error
reply.Timestamp = lastHeader.Timestamp
reply.Txn = ba.Txn
return reply, nil
}
示例4: sendChunk
// sendChunk is in charge of sending an "admissible" piece of batch, i.e. one
// which doesn't need to be subdivided further before going to a range (so no
// mixing of forward and reverse scans, etc). The parameters and return values
// correspond to client.Sender with the exception of the returned boolean,
// which is true when indicating that the caller should retry but needs to send
// EndTransaction in a separate request.
func (ds *DistSender) sendChunk(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error, bool) {
isReverse := ba.IsReverse()
trace := tracer.FromCtx(ctx)
// The minimal key range encompassing all requests contained within.
// Local addressing has already been resolved.
// TODO(tschottdorf): consider rudimentary validation of the batch here
// (for example, non-range requests with EndKey, or empty key ranges).
rs := keys.Range(ba)
var br *roachpb.BatchResponse
// Send the request to one range per iteration.
for {
considerIntents := false
var curReply *roachpb.BatchResponse
var desc *roachpb.RangeDescriptor
var needAnother bool
var pErr *roachpb.Error
for r := retry.Start(ds.rpcRetryOptions); r.Next(); {
// Get range descriptor (or, when spanning range, descriptors). Our
// error handling below may clear them on certain errors, so we
// refresh (likely from the cache) on every retry.
descDone := trace.Epoch("meta descriptor lookup")
var evictDesc func()
desc, needAnother, evictDesc, pErr = ds.getDescriptors(rs, considerIntents, isReverse)
descDone()
// getDescriptors may fail retryably if the first range isn't
// available via Gossip.
if pErr != nil {
if pErr.Retryable {
if log.V(1) {
log.Warning(pErr)
}
continue
}
break
}
if needAnother && br == nil {
// TODO(tschottdorf): we should have a mechanism for discovering
// range merges (descriptor staleness will mostly go unnoticed),
// or we'll be turning single-range queries into multi-range
// queries for no good reason.
// If there's no transaction and op spans ranges, possibly
// re-run as part of a transaction for consistency. The
// case where we don't need to re-run is if the read
// consistency is not required.
if ba.Txn == nil && ba.IsPossibleTransaction() &&
ba.ReadConsistency != roachpb.INCONSISTENT {
return nil, roachpb.NewError(&roachpb.OpRequiresTxnError{}), false
}
// If the request is more than but ends with EndTransaction, we
// want the caller to come again with the EndTransaction in an
// extra call.
if l := len(ba.Requests) - 1; l > 0 && ba.Requests[l].GetInner().Method() == roachpb.EndTransaction {
return nil, roachpb.NewError(errors.New("cannot send 1PC txn to multiple ranges")), true /* shouldSplitET */
}
}
// It's possible that the returned descriptor misses parts of the
// keys it's supposed to scan after it's truncated to match the
// descriptor. Example revscan [a,g), first desc lookup for "g"
// returns descriptor [c,d) -> [d,g) is never scanned.
// We evict and retry in such a case.
if (isReverse && !desc.ContainsKeyRange(desc.StartKey, rs.EndKey)) || (!isReverse && !desc.ContainsKeyRange(rs.Key, desc.EndKey)) {
evictDesc()
continue
}
curReply, pErr = func() (*roachpb.BatchResponse, *roachpb.Error) {
// Truncate the request to our current key range.
intersected, iErr := rs.Intersect(desc)
if iErr != nil {
return nil, roachpb.NewError(iErr)
}
truncBA, numActive, trErr := truncate(ba, intersected)
if numActive == 0 && trErr == nil {
// This shouldn't happen in the wild, but some tests
// exercise it.
return nil, roachpb.NewErrorf("truncation resulted in empty batch on [%s,%s): %s",
rs.Key, rs.EndKey, ba)
}
if trErr != nil {
return nil, roachpb.NewError(trErr)
}
return ds.sendSingleRange(trace, truncBA, desc)
}()
// If sending succeeded, break this loop.
if pErr == nil {
break
}
//.........这里部分代码省略.........
示例5: Send
// Send implements the batch.Sender interface. It subdivides
// the Batch into batches admissible for sending (preventing certain
// illegal mixtures of requests), executes each individual part
// (which may span multiple ranges), and recombines the response.
// When the request spans ranges, it is split up and the corresponding
// ranges queried serially, in ascending order.
// In particular, the first write in a transaction may not be part of the first
// request sent. This is relevant since the first write is a BeginTransaction
// request, thus opening up a window of time during which there may be intents
// of a transaction, but no entry. Pushing such a transaction will succeed, and
// may lead to the transaction being aborted early.
func (ds *DistSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
// In the event that timestamp isn't set and read consistency isn't
// required, set the timestamp using the local clock.
if ba.ReadConsistency == roachpb.INCONSISTENT && ba.Timestamp.Equal(roachpb.ZeroTimestamp) {
ba.Timestamp = ds.clock.Now()
}
if ba.Txn != nil && len(ba.Txn.CertainNodes.Nodes) == 0 {
// Ensure the local NodeID is marked as free from clock offset;
// the transaction's timestamp was taken off the local clock.
if nDesc := ds.getNodeDescriptor(); nDesc != nil {
// TODO(tschottdorf): bad style to assume that ba.Txn is ours.
// No race here, but should have a better way of doing this.
// TODO(tschottdorf): future refactoring should move this to txn
// creation in TxnCoordSender, which is currently unaware of the
// NodeID (and wraps *DistSender through client.Sender since it
// also needs test compatibility with *LocalSender).
ba.Txn.CertainNodes.Add(nDesc.NodeID)
}
}
if len(ba.Requests) < 1 {
panic("empty batch")
}
var rplChunks []*roachpb.BatchResponse
parts := ba.Split(false /* don't split ET */)
for len(parts) > 0 {
part := parts[0]
ba.Requests = part
rpl, pErr, shouldSplitET := ds.sendChunk(ctx, ba)
if shouldSplitET {
// If we tried to send a single round-trip EndTransaction but
// it looks like it's going to hit multiple ranges, split it
// here and try again.
if len(parts) != 1 {
panic("EndTransaction not in last chunk of batch")
}
parts = ba.Split(true /* split ET */)
if len(parts) != 2 {
panic("split of final EndTransaction chunk resulted in != 2 parts")
}
continue
}
if pErr != nil {
return nil, pErr
}
// Propagate transaction from last reply to next request. The final
// update is taken and put into the response's main header.
ba.Txn.Update(rpl.Header().Txn)
rplChunks = append(rplChunks, rpl)
parts = parts[1:]
}
reply := rplChunks[0]
for _, rpl := range rplChunks[1:] {
reply.Responses = append(reply.Responses, rpl.Responses...)
}
*reply.Header() = rplChunks[len(rplChunks)-1].BatchResponse_Header
return reply, nil
}
示例6: Send
// Send implements the batch.Sender interface. It subdivides
// the Batch into batches admissible for sending (preventing certain
// illegal mixtures of requests), executes each individual part
// (which may span multiple ranges), and recombines the response.
// When the request spans ranges, it is split up and the corresponding
// ranges queried serially, in ascending order.
// In particular, the first write in a transaction may not be part of the first
// request sent. This is relevant since the first write is a BeginTransaction
// request, thus opening up a window of time during which there may be intents
// of a transaction, but no entry. Pushing such a transaction will succeed, and
// may lead to the transaction being aborted early.
func (ds *DistSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
tracing.AnnotateTrace()
// In the event that timestamp isn't set and read consistency isn't
// required, set the timestamp using the local clock.
if ba.ReadConsistency == roachpb.INCONSISTENT && ba.Timestamp.Equal(hlc.ZeroTimestamp) {
ba.Timestamp = ds.clock.Now()
}
if ba.Txn != nil {
// Make a copy here since the code below modifies it in different places.
// TODO(tschottdorf): be smarter about this - no need to do it for
// requests that don't get split.
txnClone := ba.Txn.Clone()
ba.Txn = &txnClone
if len(ba.Txn.ObservedTimestamps) == 0 {
// Ensure the local NodeID is marked as free from clock offset;
// the transaction's timestamp was taken off the local clock.
if nDesc := ds.getNodeDescriptor(); nDesc != nil {
// TODO(tschottdorf): future refactoring should move this to txn
// creation in TxnCoordSender, which is currently unaware of the
// NodeID (and wraps *DistSender through client.Sender since it
// also needs test compatibility with *LocalSender).
//
// Taking care below to not modify any memory referenced from
// our BatchRequest which may be shared with others.
//
// We already have a clone of our txn (see above), so we can
// modify it freely.
//
// Zero the existing data. That makes sure that if we had
// something of size zero but with capacity, we don't re-use the
// existing space (which others may also use). This is just to
// satisfy paranoia/OCD and not expected to matter in practice.
ba.Txn.ResetObservedTimestamps()
// OrigTimestamp is the HLC timestamp at which the Txn started, so
// this effectively means no more uncertainty on this node.
ba.Txn.UpdateObservedTimestamp(nDesc.NodeID, ba.Txn.OrigTimestamp)
}
}
}
if len(ba.Requests) < 1 {
panic("empty batch")
}
if ba.MaxSpanRequestKeys != 0 {
// Verify that the batch contains only specific range requests or the
// Begin/EndTransactionRequest. Verify that a batch with a ReverseScan
// only contains ReverseScan range requests.
isReverse := ba.IsReverse()
for _, req := range ba.Requests {
inner := req.GetInner()
switch inner.(type) {
case *roachpb.ScanRequest, *roachpb.DeleteRangeRequest:
// Accepted range requests. All other range requests are still
// not supported.
// TODO(vivek): don't enumerate all range requests.
if isReverse {
return nil, roachpb.NewErrorf("batch with limit contains both forward and reverse scans")
}
case *roachpb.BeginTransactionRequest, *roachpb.EndTransactionRequest, *roachpb.ReverseScanRequest:
continue
default:
return nil, roachpb.NewErrorf("batch with limit contains %T request", inner)
}
}
}
var rplChunks []*roachpb.BatchResponse
parts := ba.Split(false /* don't split ET */)
if len(parts) > 1 && ba.MaxSpanRequestKeys != 0 {
// We already verified above that the batch contains only scan requests of the same type.
// Such a batch should never need splitting.
panic("batch with MaxSpanRequestKeys needs splitting")
}
for len(parts) > 0 {
part := parts[0]
ba.Requests = part
rpl, pErr, shouldSplitET := ds.sendChunk(ctx, ba)
if shouldSplitET {
// If we tried to send a single round-trip EndTransaction but
// it looks like it's going to hit multiple ranges, split it
// here and try again.
if len(parts) != 1 {
panic("EndTransaction not in last chunk of batch")
//.........这里部分代码省略.........
示例7: truncate
// truncate restricts all contained requests to the given key range
// and returns a new BatchRequest.
// All requests contained in that batch are "truncated" to the given
// span, inserting NoopRequest appropriately to replace requests which
// are left without a key range to operate on. The number of non-noop
// requests after truncation is returned.
func truncate(ba roachpb.BatchRequest, rs roachpb.RSpan) (roachpb.BatchRequest, int, error) {
truncateOne := func(args roachpb.Request) (bool, roachpb.Span, error) {
if _, ok := args.(*roachpb.NoopRequest); ok {
return true, emptySpan, nil
}
header := args.Header()
if !roachpb.IsRange(args) {
// This is a point request.
if len(header.EndKey) > 0 {
return false, emptySpan, errors.Errorf("%T is not a range command, but EndKey is set", args)
}
keyAddr, err := keys.Addr(header.Key)
if err != nil {
return false, emptySpan, err
}
if !rs.ContainsKey(keyAddr) {
return false, emptySpan, nil
}
return true, header, nil
}
// We're dealing with a range-spanning request.
local := false
keyAddr, err := keys.Addr(header.Key)
if err != nil {
return false, emptySpan, err
}
endKeyAddr, err := keys.Addr(header.EndKey)
if err != nil {
return false, emptySpan, err
}
if l, r := !keyAddr.Equal(header.Key), !endKeyAddr.Equal(header.EndKey); l || r {
if !l || !r {
return false, emptySpan, errors.Errorf("local key mixed with global key in range")
}
local = true
}
if keyAddr.Less(rs.Key) {
// rs.Key can't be local because it contains range split points, which
// are never local.
if !local {
header.Key = rs.Key.AsRawKey()
} else {
// The local start key should be truncated to the boundary of local keys which
// address to rs.Key.
header.Key = keys.MakeRangeKeyPrefix(rs.Key)
}
}
if !endKeyAddr.Less(rs.EndKey) {
// rs.EndKey can't be local because it contains range split points, which
// are never local.
if !local {
header.EndKey = rs.EndKey.AsRawKey()
} else {
// The local end key should be truncated to the boundary of local keys which
// address to rs.EndKey.
header.EndKey = keys.MakeRangeKeyPrefix(rs.EndKey)
}
}
// Check whether the truncation has left any keys in the range. If not,
// we need to cut it out of the request.
if header.Key.Compare(header.EndKey) >= 0 {
return false, emptySpan, nil
}
return true, header, nil
}
var numNoop int
origRequests := ba.Requests
ba.Requests = make([]roachpb.RequestUnion, len(ba.Requests))
for pos, arg := range origRequests {
hasRequest, newHeader, err := truncateOne(arg.GetInner())
if !hasRequest {
// We omit this one, i.e. replace it with a Noop.
numNoop++
union := roachpb.RequestUnion{}
union.MustSetInner(&noopRequest)
ba.Requests[pos] = union
} else {
// Keep the old one. If we must adjust the header, must copy.
if inner := origRequests[pos].GetInner(); newHeader.Equal(inner.Header()) {
ba.Requests[pos] = origRequests[pos]
} else {
shallowCopy := inner.ShallowCopy()
shallowCopy.SetHeader(newHeader)
union := &ba.Requests[pos] // avoid operating on copy
union.MustSetInner(shallowCopy)
}
}
if err != nil {
return roachpb.BatchRequest{}, 0, err
}
}
return ba, len(ba.Requests) - numNoop, nil
}
示例8: sendChunk
// sendChunk is in charge of sending an "admissible" piece of batch, i.e. one
// which doesn't need to be subdivided further before going to a range (so no
// mixing of forward and reverse scans, etc). The parameters and return values
// correspond to client.Sender with the exception of the returned boolean,
// which is true when indicating that the caller should retry but needs to send
// EndTransaction in a separate request.
func (ds *DistSender) sendChunk(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error, bool) {
isReverse := ba.IsReverse()
ctx, cleanup := tracing.EnsureContext(ctx, ds.Tracer)
defer cleanup()
// The minimal key range encompassing all requests contained within.
// Local addressing has already been resolved.
// TODO(tschottdorf): consider rudimentary validation of the batch here
// (for example, non-range requests with EndKey, or empty key ranges).
rs, err := keys.Range(ba)
if err != nil {
return nil, roachpb.NewError(err), false
}
var br *roachpb.BatchResponse
// Send the request to one range per iteration.
for {
// Increase the sequence counter only once before sending RPCs to
// the ranges involved in this chunk of the batch (as opposed to for
// each RPC individually). On RPC errors, there's no guarantee that
// the request hasn't made its way to the target regardless of the
// error; we'd like the second execution to be caught by the sequence
// cache if that happens. There is a small chance that that we address
// a range twice in this chunk (stale/suboptimal descriptors due to
// splits/merges) which leads to a transaction retry.
// TODO(tschottdorf): it's possible that if we don't evict from the
// cache we could be in for a busy loop.
ba.SetNewRequest()
var curReply *roachpb.BatchResponse
var desc *roachpb.RangeDescriptor
var evictToken evictionToken
var needAnother bool
var pErr *roachpb.Error
var finished bool
for r := retry.Start(ds.rpcRetryOptions); r.Next(); {
// Get range descriptor (or, when spanning range, descriptors). Our
// error handling below may clear them on certain errors, so we
// refresh (likely from the cache) on every retry.
log.Trace(ctx, "meta descriptor lookup")
desc, needAnother, evictToken, pErr = ds.getDescriptors(rs, evictToken, isReverse)
// getDescriptors may fail retryably if the first range isn't
// available via Gossip.
if pErr != nil {
log.Trace(ctx, "range descriptor lookup failed: "+pErr.String())
if pErr.Retryable {
if log.V(1) {
log.Warning(pErr)
}
continue
}
break
} else {
log.Trace(ctx, "looked up range descriptor")
}
if needAnother && br == nil {
// TODO(tschottdorf): we should have a mechanism for discovering
// range merges (descriptor staleness will mostly go unnoticed),
// or we'll be turning single-range queries into multi-range
// queries for no good reason.
// If there's no transaction and op spans ranges, possibly
// re-run as part of a transaction for consistency. The
// case where we don't need to re-run is if the read
// consistency is not required.
if ba.Txn == nil && ba.IsPossibleTransaction() &&
ba.ReadConsistency != roachpb.INCONSISTENT {
return nil, roachpb.NewError(&roachpb.OpRequiresTxnError{}), false
}
// If the request is more than but ends with EndTransaction, we
// want the caller to come again with the EndTransaction in an
// extra call.
if l := len(ba.Requests) - 1; l > 0 && ba.Requests[l].GetInner().Method() == roachpb.EndTransaction {
return nil, roachpb.NewError(errors.New("cannot send 1PC txn to multiple ranges")), true /* shouldSplitET */
}
}
// It's possible that the returned descriptor misses parts of the
// keys it's supposed to scan after it's truncated to match the
// descriptor. Example revscan [a,g), first desc lookup for "g"
// returns descriptor [c,d) -> [d,g) is never scanned.
// We evict and retry in such a case.
includesFrontOfCurSpan := func(rd *roachpb.RangeDescriptor) bool {
if isReverse {
// This approach is needed because rs.EndKey is exclusive.
return desc.ContainsKeyRange(desc.StartKey, rs.EndKey)
}
return desc.ContainsKey(rs.Key)
}
if !includesFrontOfCurSpan(desc) {
if err := evictToken.Evict(); err != nil {
//.........这里部分代码省略.........
示例9: send
// send runs the specified calls synchronously in a single batch and
// returns any errors. If the transaction is read-only or has already
// been successfully committed or aborted, a potential trailing
// EndTransaction call is silently dropped, allowing the caller to
// always commit or clean-up explicitly even when that may not be
// required (or even erroneous). Returns (nil, nil) for an empty batch.
func (txn *Txn) send(ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
if txn.Proto.Status != roachpb.PENDING || txn.IsFinalized() {
return nil, roachpb.NewErrorf(
"attempting to use transaction with wrong status or finalized: %s", txn.Proto.Status)
}
// It doesn't make sense to use inconsistent reads in a transaction. However,
// we still need to accept it as a parameter for this to compile.
if ba.ReadConsistency != roachpb.CONSISTENT {
return nil, roachpb.NewErrorf("cannot use %s ReadConsistency in txn",
ba.ReadConsistency)
}
lastIndex := len(ba.Requests) - 1
if lastIndex < 0 {
return nil, nil
}
// firstWriteIndex is set to the index of the first command which is
// a transactional write. If != -1, this indicates an intention to
// write. This is in contrast to txn.Proto.Writing, which is set by
// the coordinator when the first intent has been created, and which
// lives for the life of the transaction.
firstWriteIndex := -1
var firstWriteKey roachpb.Key
for i, ru := range ba.Requests {
args := ru.GetInner()
if i < lastIndex {
if _, ok := args.(*roachpb.EndTransactionRequest); ok {
return nil, roachpb.NewErrorf("%s sent as non-terminal call", args.Method())
}
}
if roachpb.IsTransactionWrite(args) && firstWriteIndex == -1 {
firstWriteKey = args.Header().Key
firstWriteIndex = i
}
}
haveTxnWrite := firstWriteIndex != -1
endTxnRequest, haveEndTxn := ba.Requests[lastIndex].GetInner().(*roachpb.EndTransactionRequest)
needBeginTxn := !txn.Proto.Writing && haveTxnWrite
needEndTxn := txn.Proto.Writing || haveTxnWrite
elideEndTxn := haveEndTxn && !needEndTxn
// If we're not yet writing in this txn, but intend to, insert a
// begin transaction request before the first write command.
if needBeginTxn {
// If the transaction already has a key (we're in a restart), make
// sure we set the key in the begin transaction request to the original.
bt := &roachpb.BeginTransactionRequest{
Span: roachpb.Span{
Key: firstWriteKey,
},
}
if txn.Proto.Key != nil {
bt.Key = txn.Proto.Key
}
// Inject the new request before position firstWriteIndex, taking
// care to avoid unnecessary allocations.
oldRequests := ba.Requests
ba.Requests = make([]roachpb.RequestUnion, len(ba.Requests)+1)
copy(ba.Requests, oldRequests[:firstWriteIndex])
ba.Requests[firstWriteIndex].MustSetInner(bt)
copy(ba.Requests[firstWriteIndex+1:], oldRequests[firstWriteIndex:])
}
if elideEndTxn {
ba.Requests = ba.Requests[:lastIndex]
}
br, pErr := txn.db.send(ba)
if elideEndTxn && pErr == nil {
// Check that read only transactions do not violate their deadline. This can NOT
// happen since the txn deadline is normally updated when it is about to expire
// or expired. We will just keep the code for safety (see TestReacquireLeaseOnRestart).
if endTxnRequest.Deadline != nil {
if endTxnRequest.Deadline.Less(txn.Proto.Timestamp) {
return nil, roachpb.NewErrorWithTxn(roachpb.NewTransactionAbortedError(), &txn.Proto)
}
}
// This normally happens on the server and sent back in response
// headers, but this transaction was optimized away. The caller may
// still inspect the transaction struct, so we manually update it
// here to emulate a true transaction.
if endTxnRequest.Commit {
txn.Proto.Status = roachpb.COMMITTED
} else {
txn.Proto.Status = roachpb.ABORTED
}
txn.finalized = true
}
//.........这里部分代码省略.........
示例10: Send
// Send implements the batch.Sender interface. It subdivides
// the Batch into batches admissible for sending (preventing certain
// illegal mixtures of requests), executes each individual part
// (which may span multiple ranges), and recombines the response.
// When the request spans ranges, it is split up and the corresponding
// ranges queried serially, in ascending order.
// In particular, the first write in a transaction may not be part of the first
// request sent. This is relevant since the first write is a BeginTransaction
// request, thus opening up a window of time during which there may be intents
// of a transaction, but no entry. Pushing such a transaction will succeed, and
// may lead to the transaction being aborted early.
func (ds *DistSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
tracing.AnnotateTrace()
// In the event that timestamp isn't set and read consistency isn't
// required, set the timestamp using the local clock.
if ba.ReadConsistency == roachpb.INCONSISTENT && ba.Timestamp.Equal(roachpb.ZeroTimestamp) {
ba.Timestamp = ds.clock.Now()
}
if ba.Txn != nil && len(ba.Txn.CertainNodes.Nodes) == 0 {
// Ensure the local NodeID is marked as free from clock offset;
// the transaction's timestamp was taken off the local clock.
if nDesc := ds.getNodeDescriptor(); nDesc != nil {
// TODO(tschottdorf): future refactoring should move this to txn
// creation in TxnCoordSender, which is currently unaware of the
// NodeID (and wraps *DistSender through client.Sender since it
// also needs test compatibility with *LocalSender).
//
// Taking care below to not modify any memory referenced from
// our BatchRequest which may be shared with others.
// First, get a shallow clone of our txn (since that holds the
// NodeList struct).
txnShallow := *ba.Txn
// Next, zero out the NodeList pointer. That makes sure that
// if we had something of size zero but with capacity, we don't
// re-use the existing space (which others may also use).
txnShallow.CertainNodes.Nodes = nil
txnShallow.CertainNodes.Add(nDesc.NodeID)
ba.Txn = &txnShallow
}
}
if len(ba.Requests) < 1 {
panic("empty batch")
}
var rplChunks []*roachpb.BatchResponse
parts := ba.Split(false /* don't split ET */)
for len(parts) > 0 {
part := parts[0]
ba.Requests = part
rpl, pErr, shouldSplitET := ds.sendChunk(ctx, ba)
if shouldSplitET {
// If we tried to send a single round-trip EndTransaction but
// it looks like it's going to hit multiple ranges, split it
// here and try again.
if len(parts) != 1 {
panic("EndTransaction not in last chunk of batch")
}
parts = ba.Split(true /* split ET */)
if len(parts) != 2 {
panic("split of final EndTransaction chunk resulted in != 2 parts")
}
continue
}
if pErr != nil {
return nil, pErr
}
// Propagate transaction from last reply to next request. The final
// update is taken and put into the response's main header.
ba.Txn.Update(rpl.Header().Txn)
rplChunks = append(rplChunks, rpl)
parts = parts[1:]
}
reply := rplChunks[0]
for _, rpl := range rplChunks[1:] {
reply.Responses = append(reply.Responses, rpl.Responses...)
}
*reply.Header() = rplChunks[len(rplChunks)-1].BatchResponse_Header
return reply, nil
}
示例11: truncate
// truncate restricts all contained requests to the given key range
// and returns a new BatchRequest.
// All requests contained in that batch are "truncated" to the given
// span, inserting NoopRequest appropriately to replace requests which
// are left without a key range to operate on. The number of non-noop
// requests after truncation is returned.
func truncate(ba roachpb.BatchRequest, rs roachpb.RSpan) (roachpb.BatchRequest, int, error) {
truncateOne := func(args roachpb.Request) (bool, roachpb.Span, error) {
if _, ok := args.(*roachpb.NoopRequest); ok {
return true, emptySpan, nil
}
header := *args.Header()
if !roachpb.IsRange(args) {
// This is a point request.
if len(header.EndKey) > 0 {
return false, emptySpan, util.Errorf("%T is not a range command, but EndKey is set", args)
}
if !rs.ContainsKey(keys.Addr(header.Key)) {
return false, emptySpan, nil
}
return true, header, nil
}
// We're dealing with a range-spanning request.
keyAddr, endKeyAddr := keys.Addr(header.Key), keys.Addr(header.EndKey)
if l, r := !keyAddr.Equal(header.Key), !endKeyAddr.Equal(header.EndKey); l || r {
if !rs.ContainsKeyRange(keyAddr, endKeyAddr) {
return false, emptySpan, util.Errorf("local key range must not span ranges")
}
if !l || !r {
return false, emptySpan, util.Errorf("local key mixed with global key in range")
}
// Range-local local key range.
return true, header, nil
}
// Below, {end,}keyAddr equals header.{End,}Key, so nothing is local.
if keyAddr.Less(rs.Key) {
header.Key = rs.Key.AsRawKey() // "key" can't be local
keyAddr = rs.Key
}
if !endKeyAddr.Less(rs.EndKey) {
header.EndKey = rs.EndKey.AsRawKey() // "endKey" can't be local
endKeyAddr = rs.EndKey
}
// Check whether the truncation has left any keys in the range. If not,
// we need to cut it out of the request.
if !keyAddr.Less(endKeyAddr) {
return false, emptySpan, nil
}
return true, header, nil
}
var numNoop int
origRequests := ba.Requests
ba.Requests = make([]roachpb.RequestUnion, len(ba.Requests))
for pos, arg := range origRequests {
hasRequest, newHeader, err := truncateOne(arg.GetInner())
if !hasRequest {
// We omit this one, i.e. replace it with a Noop.
numNoop++
nReq := roachpb.RequestUnion{}
if !nReq.SetValue(&roachpb.NoopRequest{}) {
panic("RequestUnion excludes NoopRequest")
}
ba.Requests[pos] = nReq
} else {
// Keep the old one. If we must adjust the header, must copy.
// TODO(tschottdorf): this could wind up cloning big chunks of data.
// Can optimize by creating a new Request manually, but with the old
// data.
if newHeader.Equal(*origRequests[pos].GetInner().Header()) {
ba.Requests[pos] = origRequests[pos]
} else {
ba.Requests[pos] = *proto.Clone(&origRequests[pos]).(*roachpb.RequestUnion)
*ba.Requests[pos].GetInner().Header() = newHeader
}
}
if err != nil {
return roachpb.BatchRequest{}, 0, err
}
}
return ba, len(ba.Requests) - numNoop, nil
}
示例12: truncate
// truncate restricts all contained requests to the given key range
// and returns a new BatchRequest.
// All requests contained in that batch are "truncated" to the given
// span, inserting NoopRequest appropriately to replace requests which
// are left without a key range to operate on. The number of non-noop
// requests after truncation is returned.
func truncate(ba roachpb.BatchRequest, rs roachpb.RSpan) (roachpb.BatchRequest, int, error) {
truncateOne := func(args roachpb.Request) (bool, roachpb.Span, error) {
if _, ok := args.(*roachpb.NoopRequest); ok {
return true, emptySpan, nil
}
header := args.Header()
if !roachpb.IsRange(args) {
// This is a point request.
if len(header.EndKey) > 0 {
return false, emptySpan, util.Errorf("%T is not a range command, but EndKey is set", args)
}
if !rs.ContainsKey(keys.Addr(header.Key)) {
return false, emptySpan, nil
}
return true, header, nil
}
// We're dealing with a range-spanning request.
keyAddr, endKeyAddr := keys.Addr(header.Key), keys.Addr(header.EndKey)
if l, r := !keyAddr.Equal(header.Key), !endKeyAddr.Equal(header.EndKey); l || r {
if !rs.ContainsKeyRange(keyAddr, endKeyAddr) {
return false, emptySpan, util.Errorf("local key range must not span ranges")
}
if !l || !r {
return false, emptySpan, util.Errorf("local key mixed with global key in range")
}
// Range-local local key range.
return true, header, nil
}
// Below, {end,}keyAddr equals header.{End,}Key, so nothing is local.
if keyAddr.Less(rs.Key) {
header.Key = rs.Key.AsRawKey() // "key" can't be local
keyAddr = rs.Key
}
if !endKeyAddr.Less(rs.EndKey) {
header.EndKey = rs.EndKey.AsRawKey() // "endKey" can't be local
endKeyAddr = rs.EndKey
}
// Check whether the truncation has left any keys in the range. If not,
// we need to cut it out of the request.
if !keyAddr.Less(endKeyAddr) {
return false, emptySpan, nil
}
return true, header, nil
}
var numNoop int
origRequests := ba.Requests
ba.Requests = make([]roachpb.RequestUnion, len(ba.Requests))
for pos, arg := range origRequests {
hasRequest, newHeader, err := truncateOne(arg.GetInner())
if !hasRequest {
// We omit this one, i.e. replace it with a Noop.
numNoop++
union := roachpb.RequestUnion{}
if !union.SetInner(&noopRequest) {
panic(fmt.Sprintf("%T excludes %T", union, noopRequest))
}
ba.Requests[pos] = union
} else {
// Keep the old one. If we must adjust the header, must copy.
if inner := origRequests[pos].GetInner(); newHeader.Equal(inner.Header()) {
ba.Requests[pos] = origRequests[pos]
} else {
shallowCopy := inner.ShallowCopy()
shallowCopy.SetHeader(newHeader)
if union := &ba.Requests[pos]; !union.SetInner(shallowCopy) {
panic(fmt.Sprintf("%T excludes %T", union, shallowCopy))
}
}
}
if err != nil {
return roachpb.BatchRequest{}, 0, err
}
}
return ba, len(ba.Requests) - numNoop, nil
}