本文整理汇总了Golang中code/google/com/p/go/tools/go/types.Func.Pkg方法的典型用法代码示例。如果您正苦于以下问题:Golang Func.Pkg方法的具体用法?Golang Func.Pkg怎么用?Golang Func.Pkg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类code/google/com/p/go/tools/go/types.Func
的用法示例。
在下文中一共展示了Func.Pkg方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: FuncValue
// FuncValue returns the Function denoted by the source-level named
// function obj.
//
func (prog *Program) FuncValue(obj *types.Func) *Function {
// Package-level function or declared method?
if v := prog.packageLevelValue(obj); v != nil {
return v.(*Function)
}
// Interface method wrapper?
return prog.LookupMethod(recvType(obj), obj.Pkg(), obj.Name())
}
示例2: lookupMethod
// lookupMethod returns the method set for type typ, which may be one
// of the interpreter's fake types.
func lookupMethod(i *interpreter, typ types.Type, meth *types.Func) *ssa.Function {
switch typ {
case rtypeType:
return i.rtypeMethods[meth.Id()]
case errorType:
return i.errorMethods[meth.Id()]
}
return i.prog.LookupMethod(typ, meth.Pkg(), meth.Name())
}
示例3: methodfunc
func (c *compiler) methodfunc(m *types.Func) *types.Func {
// We're not privy to *Func objects for methods in
// imported packages, so we must synthesise them.
data := c.objectdata[m]
if data == nil {
ident := ast.NewIdent(m.Name())
data = &ObjectData{Ident: ident, Package: m.Pkg()}
c.objects[ident] = m
c.objectdata[m] = data
}
return m
}
示例4: boundMethodWrapper
// boundMethodWrapper returns a synthetic wrapper function that
// delegates to a concrete or interface method.
// The wrapper has one free variable, the method's receiver.
// Use MakeClosure with such a wrapper to construct a bound-method
// closure. e.g.:
//
// type T int or: type T interface { meth() }
// func (t T) meth()
// var t T
// f := t.meth
// f() // calls t.meth()
//
// f is a closure of a synthetic wrapper defined as if by:
//
// f := func() { return t.meth() }
//
// EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu)
//
func boundMethodWrapper(prog *Program, obj *types.Func) *Function {
prog.methodsMu.Lock()
defer prog.methodsMu.Unlock()
fn, ok := prog.boundMethodWrappers[obj]
if !ok {
description := fmt.Sprintf("bound method wrapper for %s", obj)
if prog.mode&LogSource != 0 {
defer logStack("%s", description)()
}
fn = &Function{
name: "bound$" + obj.FullName(),
Signature: changeRecv(obj.Type().(*types.Signature), nil), // drop receiver
Synthetic: description,
Prog: prog,
Pkg: prog.packages[obj.Pkg()],
pos: obj.Pos(),
}
cap := &Capture{name: "recv", typ: recvType(obj), parent: fn}
fn.FreeVars = []*Capture{cap}
fn.startBody()
createParams(fn)
var c Call
if _, ok := recvType(obj).Underlying().(*types.Interface); !ok { // concrete
c.Call.Value = prog.declaredFunc(obj)
c.Call.Args = []Value{cap}
} else {
c.Call.Value = cap
c.Call.Method = obj
}
for _, arg := range fn.Params {
c.Call.Args = append(c.Call.Args, arg)
}
emitTailCall(fn, &c)
fn.finishBody()
prog.boundMethodWrappers[obj] = fn
}
return fn
}
示例5: interfaceMethodWrapper
// interfaceMethodWrapper returns a synthetic wrapper function
// permitting an abstract method obj to be called like a standalone
// function, e.g.:
//
// type I interface { f(x int) R }
// m := I.f // wrapper
// var i I
// m(i, 0)
//
// The wrapper is defined as if by:
//
// func (i I) f(x int, ...) R {
// return i.f(x, ...)
// }
//
// typ is the type of the receiver (I here). It isn't necessarily
// equal to the recvType(obj) because one interface may embed another.
// TODO(adonovan): more tests.
//
// TODO(adonovan): opt: currently the stub is created even when used
// in call position: I.f(i, 0). Clearly this is suboptimal.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func interfaceMethodWrapper(prog *Program, typ types.Type, obj *types.Func) *Function {
// If one interface embeds another they'll share the same
// wrappers for common methods. This is safe, but it might
// confuse some tools because of the implicit interface
// conversion applied to the first argument. If this becomes
// a problem, we should include 'typ' in the memoization key.
fn, ok := prog.ifaceMethodWrappers[obj]
if !ok {
description := "interface method wrapper"
if prog.mode&LogSource != 0 {
defer logStack("(%s).%s, %s", typ, obj.Name(), description)()
}
fn = &Function{
name: obj.Name(),
object: obj,
Signature: obj.Type().(*types.Signature),
Synthetic: description,
pos: obj.Pos(),
Prog: prog,
Pkg: prog.packages[obj.Pkg()],
}
fn.startBody()
fn.addParam("recv", typ, token.NoPos)
createParams(fn)
var c Call
c.Call.Method = obj
c.Call.Value = fn.Params[0]
for _, arg := range fn.Params[1:] {
c.Call.Args = append(c.Call.Args, arg)
}
emitTailCall(fn, &c)
fn.finishBody()
prog.ifaceMethodWrappers[obj] = fn
}
return fn
}
示例6: checkMethod
// checkMethod performs safety checks for renaming a method.
// There are three hazards:
// - declaration conflicts
// - selection ambiguity/changes
// - entailed renamings of assignable concrete/interface types (for now, just reject)
func (r *renamer) checkMethod(from *types.Func) {
// e.g. error.Error
if from.Pkg() == nil {
r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
return
}
// As always, having to support concrete methods with pointer
// and non-pointer receivers, and named vs unnamed types with
// methods, makes tooling fun.
// ASSIGNABILITY
//
// For now, if any method renaming breaks a required
// assignability to another type, we reject it.
//
// TODO(adonovan): probably we should compute the entailed
// renamings so that an interface method renaming causes
// concrete methods to change too. But which ones?
//
// There is no correct answer, only heuristics, because Go's
// "duck typing" doesn't distinguish intentional from contingent
// assignability. There are two obvious approaches:
//
// (1) Update the minimum set of types to preserve the
// assignability of types all syntactic assignments
// (incl. implicit ones in calls, returns, sends, etc).
// The satisfy.Finder enumerates these.
// This is likely to be an underapproximation.
//
// (2) Update all types that are assignable to/from the changed
// type. This requires computing the "implements" relation
// for all pairs of types (as godoc and oracle do).
// This is likely to be an overapproximation.
//
// If a concrete type is renamed, we probably do not want to
// rename corresponding interfaces; interface renamings should
// probably be initiated at the interface. (But what if a
// concrete type implements multiple interfaces with the same
// method? Then the user is stuck.)
//
// We need some experience before we decide how to implement this.
// Check for conflict at point of declaration.
// Check to ensure preservation of assignability requirements.
recv := from.Type().(*types.Signature).Recv().Type()
if isInterface(recv) {
// Abstract method
// declaration
prev, _, _ := types.LookupFieldOrMethod(recv, false, from.Pkg(), r.to)
if prev != nil {
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this method")
return
}
// Check all interfaces that embed this one for
// declaration conflicts too.
for _, info := range r.packages {
// Start with named interface types (better errors)
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok && isInterface(obj.Type()) {
f, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), from.Name())
if f == nil {
continue
}
t, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), r.to)
if t == nil {
continue
}
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(t.Pos(), "\twould conflict with this method")
r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
}
}
// Now look at all literal interface types (includes named ones again).
for e, tv := range info.Types {
if e, ok := e.(*ast.InterfaceType); ok {
_ = e
_ = tv.Type.(*types.Interface)
// TODO(adonovan): implement same check as above.
}
}
}
// assignability
for T := range r.findAssignments(recv) {
if obj, _, _ := types.LookupFieldOrMethod(T, false, from.Pkg(), from.Name()); obj == nil {
continue
//.........这里部分代码省略.........