当前位置: 首页>>代码示例>>Golang>>正文


Golang Reloc.Xadd方法代码示例

本文整理汇总了Golang中cmd/internal/ld.Reloc.Xadd方法的典型用法代码示例。如果您正苦于以下问题:Golang Reloc.Xadd方法的具体用法?Golang Reloc.Xadd怎么用?Golang Reloc.Xadd使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cmd/internal/ld.Reloc的用法示例。


在下文中一共展示了Reloc.Xadd方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。

示例1: archreloc

func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
	if ld.Linkmode == ld.LinkExternal {
		switch r.Type {
		default:
			return -1

		case obj.R_ADDRARM64:
			r.Done = 0

			// set up addend for eventual relocation via outer symbol.
			rs := r.Sym
			r.Xadd = r.Add
			for rs.Outer != nil {
				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
				rs = rs.Outer
			}

			if rs.Type != obj.SHOSTOBJ && rs.Sect == nil {
				ld.Diag("missing section for %s", rs.Name)
			}
			r.Xsym = rs

			// the first instruction is always at the lower address, this is endian neutral;
			// but note that o0 and o1 should still use the target endian.
			o0 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off : r.Off+4])
			o1 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off+4 : r.Off+8])

			// Note: ld64 currently has a bug that any non-zero addend for BR26 relocation
			// will make the linking fail because it thinks the code is not PIC even though
			// the BR26 relocation should be fully resolved at link time.
			// That is the reason why the next if block is disabled. When the bug in ld64
			// is fixed, we can enable this block and also enable duff's device in cmd/7g.
			if false && ld.HEADTYPE == obj.Hdarwin {
				// Mach-O wants the addend to be encoded in the instruction
				// Note that although Mach-O supports ARM64_RELOC_ADDEND, it
				// can only encode 24-bit of signed addend, but the instructions
				// supports 33-bit of signed addend, so we always encode the
				// addend in place.
				o0 |= (uint32((r.Xadd>>12)&3) << 29) | (uint32((r.Xadd>>12>>2)&0x7ffff) << 5)
				o1 |= uint32(r.Xadd&0xfff) << 10
				r.Xadd = 0
			}

			// when laid out, the instruction order must always be o1, o2.
			if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
				*val = int64(o0)<<32 | int64(o1)
			} else {
				*val = int64(o1)<<32 | int64(o0)
			}

			return 0

		case obj.R_CALLARM64:
			r.Done = 0
			r.Xsym = r.Sym
			*val = int64(0xfc000000 & uint32(r.Add))
			r.Xadd = int64((uint32(r.Add) &^ 0xfc000000) * 4)
			r.Add = 0
			return 0
		}
	}

	switch r.Type {
	case obj.R_CONST:
		*val = r.Add
		return 0

	case obj.R_GOTOFF:
		*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got", 0))
		return 0

	case obj.R_ADDRARM64:
		t := ld.Symaddr(r.Sym) + r.Add - ((s.Value + int64(r.Off)) &^ 0xfff)
		if t >= 1<<32 || t < -1<<32 {
			ld.Diag("program too large, address relocation distance = %d", t)
		}

		// the first instruction is always at the lower address, this is endian neutral;
		// but note that o0 and o1 should still use the target endian.
		o0 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off : r.Off+4])
		o1 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off+4 : r.Off+8])

		o0 |= (uint32((t>>12)&3) << 29) | (uint32((t>>12>>2)&0x7ffff) << 5)
		o1 |= uint32(t&0xfff) << 10

		// when laid out, the instruction order must always be o1, o2.
		if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
			*val = int64(o0)<<32 | int64(o1)
		} else {
			*val = int64(o1)<<32 | int64(o0)
		}
		return 0

	case obj.R_CALLARM64:
		*val = int64((0xfc000000 & uint32(r.Add)) | uint32((ld.Symaddr(r.Sym)+r.Add*4-(s.Value+int64(r.Off)))/4))
		return 0
	}

	return -1
}
开发者ID:bibbyflyaway,项目名称:go,代码行数:100,代码来源:asm.go

示例2: archreloc

func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
	if ld.Linkmode == ld.LinkExternal {
		switch r.Type {
		case ld.R_CALLARM:
			r.Done = 0

			// set up addend for eventual relocation via outer symbol.
			rs := r.Sym

			r.Xadd = r.Add
			if r.Xadd&0x800000 != 0 {
				r.Xadd |= ^0xffffff
			}
			r.Xadd *= 4
			for rs.Outer != nil {
				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
				rs = rs.Outer
			}

			if rs.Type != ld.SHOSTOBJ && rs.Sect == nil {
				ld.Diag("missing section for %s", rs.Name)
			}
			r.Xsym = rs

			// ld64 for arm seems to want the symbol table to contain offset
			// into the section rather than pseudo virtual address that contains
			// the section load address.
			// we need to compensate that by removing the instruction's address
			// from addend.
			if ld.HEADTYPE == ld.Hdarwin {
				r.Xadd -= ld.Symaddr(s) + int64(r.Off)
			}

			*val = int64(braddoff(int32(0xff000000&uint32(r.Add)), int32(0xffffff&uint32(r.Xadd/4))))
			return 0
		}

		return -1
	}

	switch r.Type {
	case ld.R_CONST:
		*val = r.Add
		return 0

	case ld.R_GOTOFF:
		*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got", 0))
		return 0

		// The following three arch specific relocations are only for generation of
	// Linux/ARM ELF's PLT entry (3 assembler instruction)
	case ld.R_PLT0: // add ip, pc, #0xXX00000
		if ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got.plt", 0)) < ld.Symaddr(ld.Linklookup(ld.Ctxt, ".plt", 0)) {
			ld.Diag(".got.plt should be placed after .plt section.")
		}
		*val = 0xe28fc600 + (0xff & (int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(ld.Linklookup(ld.Ctxt, ".plt", 0))+int64(r.Off))+r.Add)) >> 20))
		return 0

	case ld.R_PLT1: // add ip, ip, #0xYY000
		*val = 0xe28cca00 + (0xff & (int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(ld.Linklookup(ld.Ctxt, ".plt", 0))+int64(r.Off))+r.Add+4)) >> 12))

		return 0

	case ld.R_PLT2: // ldr pc, [ip, #0xZZZ]!
		*val = 0xe5bcf000 + (0xfff & int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(ld.Linklookup(ld.Ctxt, ".plt", 0))+int64(r.Off))+r.Add+8)))

		return 0

	case ld.R_CALLARM: // bl XXXXXX or b YYYYYY
		*val = int64(braddoff(int32(0xff000000&uint32(r.Add)), int32(0xffffff&uint32((ld.Symaddr(r.Sym)+int64((uint32(r.Add))*4)-(s.Value+int64(r.Off)))/4))))

		return 0
	}

	return -1
}
开发者ID:xslonepiece,项目名称:goios,代码行数:76,代码来源:asm.go


注:本文中的cmd/internal/ld.Reloc.Xadd方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。