本文整理汇总了Golang中cmd/internal/ld.Reloc.Sym方法的典型用法代码示例。如果您正苦于以下问题:Golang Reloc.Sym方法的具体用法?Golang Reloc.Sym怎么用?Golang Reloc.Sym使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cmd/internal/ld.Reloc
的用法示例。
在下文中一共展示了Reloc.Sym方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: adddynrel
func adddynrel(s *ld.LSym, r *ld.Reloc) {
targ := r.Sym
ld.Ctxt.Cursym = s
switch r.Type {
default:
if r.Type >= 256 {
ld.Diag("unexpected relocation type %d", r.Type)
return
}
// Handle relocations found in ELF object files.
case 256 + ld.R_ARM_PLT32:
r.Type = ld.R_CALLARM
if targ.Type == ld.SDYNIMPORT {
addpltsym(ld.Ctxt, targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Add = int64(braddoff(int32(r.Add), targ.Plt/4))
}
return
case 256 + ld.R_ARM_THM_PC22: // R_ARM_THM_CALL
ld.Diag("R_ARM_THM_CALL, are you using -marm?")
ld.Errorexit()
return
case 256 + ld.R_ARM_GOT32: // R_ARM_GOT_BREL
if targ.Type != ld.SDYNIMPORT {
addgotsyminternal(ld.Ctxt, targ)
} else {
addgotsym(ld.Ctxt, targ)
}
r.Type = ld.R_CONST // write r->add during relocsym
r.Sym = nil
r.Add += int64(targ.Got)
return
case 256 + ld.R_ARM_GOT_PREL: // GOT(nil) + A - nil
if targ.Type != ld.SDYNIMPORT {
addgotsyminternal(ld.Ctxt, targ)
} else {
addgotsym(ld.Ctxt, targ)
}
r.Type = ld.R_PCREL
r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
r.Add += int64(targ.Got) + 4
return
case 256 + ld.R_ARM_GOTOFF: // R_ARM_GOTOFF32
r.Type = ld.R_GOTOFF
return
case 256 + ld.R_ARM_GOTPC: // R_ARM_BASE_PREL
r.Type = ld.R_PCREL
r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
r.Add += 4
return
case 256 + ld.R_ARM_CALL:
r.Type = ld.R_CALLARM
if targ.Type == ld.SDYNIMPORT {
addpltsym(ld.Ctxt, targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Add = int64(braddoff(int32(r.Add), targ.Plt/4))
}
return
case 256 + ld.R_ARM_REL32: // R_ARM_REL32
r.Type = ld.R_PCREL
r.Add += 4
return
case 256 + ld.R_ARM_ABS32:
if targ.Type == ld.SDYNIMPORT {
ld.Diag("unexpected R_ARM_ABS32 relocation for dynamic symbol %s", targ.Name)
}
r.Type = ld.R_ADDR
return
// we can just ignore this, because we are targeting ARM V5+ anyway
case 256 + ld.R_ARM_V4BX:
if r.Sym != nil {
// R_ARM_V4BX is ABS relocation, so this symbol is a dummy symbol, ignore it
r.Sym.Type = 0
}
r.Sym = nil
return
case 256 + ld.R_ARM_PC24,
256 + ld.R_ARM_JUMP24:
//.........这里部分代码省略.........
示例2: gentext
func gentext() {
var s *ld.LSym
var stub *ld.LSym
var pprevtextp **ld.LSym
var r *ld.Reloc
var n string
var o1 uint32
var i int
// The ppc64 ABI PLT has similar concepts to other
// architectures, but is laid out quite differently. When we
// see an R_PPC64_REL24 relocation to a dynamic symbol
// (indicating that the call needs to go through the PLT), we
// generate up to three stubs and reserve a PLT slot.
//
// 1) The call site will be bl x; nop (where the relocation
// applies to the bl). We rewrite this to bl x_stub; ld
// r2,24(r1). The ld is necessary because x_stub will save
// r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
//
// 2) We reserve space for a pointer in the .plt section (once
// per referenced dynamic function). .plt is a data
// section filled solely by the dynamic linker (more like
// .plt.got on other architectures). Initially, the
// dynamic linker will fill each slot with a pointer to the
// corresponding [email protected] entry point.
//
// 3) We generate the "call stub" x_stub (once per dynamic
// function/object file pair). This saves the TOC in the
// TOC save slot, reads the function pointer from x's .plt
// slot and calls it like any other global entry point
// (including setting r12 to the function address).
//
// 4) We generate the "symbol resolver stub" [email protected] (once per
// dynamic function). This is solely a branch to the glink
// resolver stub.
//
// 5) We generate the glink resolver stub (only once). This
// computes which symbol resolver stub we came through and
// invokes the dynamic resolver via a pointer provided by
// the dynamic linker. This will patch up the .plt slot to
// point directly at the function so future calls go
// straight from the call stub to the real function, and
// then call the function.
// NOTE: It's possible we could make ppc64 closer to other
// architectures: ppc64's .plt is like .plt.got on other
// platforms and ppc64's .glink is like .plt on other
// platforms.
// Find all R_PPC64_REL24 relocations that reference dynamic
// imports. Reserve PLT entries for these symbols and
// generate call stubs. The call stubs need to live in .text,
// which is why we need to do this pass this early.
//
// This assumes "case 1" from the ABI, where the caller needs
// us to save and restore the TOC pointer.
pprevtextp = &ld.Ctxt.Textp
for s = *pprevtextp; s != nil; pprevtextp, s = &s.Next, s.Next {
for i = range s.R {
r = &s.R[i]
if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT {
continue
}
// Reserve PLT entry and generate symbol
// resolver
addpltsym(ld.Ctxt, r.Sym)
// Generate call stub
n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
stub = ld.Linklookup(ld.Ctxt, n, 0)
stub.Reachable = stub.Reachable || s.Reachable
if stub.Size == 0 {
// Need outer to resolve .TOC.
stub.Outer = s
// Link in to textp before s (we could
// do it after, but would have to skip
// the subsymbols)
*pprevtextp = stub
stub.Next = s
pprevtextp = &stub.Next
gencallstub(1, stub, r.Sym)
}
// Update the relocation to use the call stub
r.Sym = stub
// Restore TOC after bl. The compiler put a
// nop here for us to overwrite.
o1 = 0xe8410018 // ld r2,24(r1)
ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
}
}
}
示例3: adddynrel
func adddynrel(s *ld.LSym, r *ld.Reloc) {
targ := r.Sym
ld.Ctxt.Cursym = s
switch r.Type {
default:
if r.Type >= 256 {
ld.Diag("unexpected relocation type %d", r.Type)
return
}
// Handle relocations found in ELF object files.
case 256 + ld.R_X86_64_PC32:
if targ.Type == ld.SDYNIMPORT {
ld.Diag("unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name)
}
if targ.Type == 0 || targ.Type == ld.SXREF {
ld.Diag("unknown symbol %s in pcrel", targ.Name)
}
r.Type = ld.R_PCREL
r.Add += 4
return
case 256 + ld.R_X86_64_PLT32:
r.Type = ld.R_PCREL
r.Add += 4
if targ.Type == ld.SDYNIMPORT {
addpltsym(targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Add += int64(targ.Plt)
}
return
case 256 + ld.R_X86_64_GOTPCREL:
if targ.Type != ld.SDYNIMPORT {
// have symbol
if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
// turn MOVQ of GOT entry into LEAQ of symbol itself
s.P[r.Off-2] = 0x8d
r.Type = ld.R_PCREL
r.Add += 4
return
}
}
// fall back to using GOT and hope for the best (CMOV*)
// TODO: just needs relocation, no need to put in .dynsym
addgotsym(targ)
r.Type = ld.R_PCREL
r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
r.Add += 4
r.Add += int64(targ.Got)
return
case 256 + ld.R_X86_64_64:
if targ.Type == ld.SDYNIMPORT {
ld.Diag("unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name)
}
r.Type = ld.R_ADDR
return
// Handle relocations found in Mach-O object files.
case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0,
512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0,
512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0:
// TODO: What is the difference between all these?
r.Type = ld.R_ADDR
if targ.Type == ld.SDYNIMPORT {
ld.Diag("unexpected reloc for dynamic symbol %s", targ.Name)
}
return
case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1:
if targ.Type == ld.SDYNIMPORT {
addpltsym(targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Add = int64(targ.Plt)
r.Type = ld.R_PCREL
return
}
fallthrough
// fall through
case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1,
512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1,
512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1,
512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1,
512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1:
r.Type = ld.R_PCREL
if targ.Type == ld.SDYNIMPORT {
ld.Diag("unexpected pc-relative reloc for dynamic symbol %s", targ.Name)
}
return
case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1:
//.........这里部分代码省略.........