本文整理汇总了C#中System.Random.Sample方法的典型用法代码示例。如果您正苦于以下问题:C# Random.Sample方法的具体用法?C# Random.Sample怎么用?C# Random.Sample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Random
的用法示例。
在下文中一共展示了Random.Sample方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Sample
//引入命名空间
using System;
// This derived class converts the uniformly distributed random
// numbers generated by base.Sample( ) to another distribution.
public class RandomProportional : Random
{
// The Sample method generates a distribution proportional to the value
// of the random numbers, in the range [0.0, 1.0].
protected override double Sample( )
{
return Math.Sqrt( base.Sample( ) );
}
public override int Next()
{
return (int) (Sample() * int.MaxValue);
}
}
public class RandomSampleDemo
{
static void Main( )
{
const int rows = 4, cols = 6;
const int runCount = 1000000;
const int distGroupCount = 10;
const double intGroupSize =
( (double)int.MaxValue + 1.0 ) / (double)distGroupCount;
RandomProportional randObj = new RandomProportional( );
int[ ] intCounts = new int[ distGroupCount ];
int[ ] realCounts = new int[ distGroupCount ];
Console.WriteLine(
"\nThe derived RandomProportional class overrides " +
"the Sample method to \ngenerate random numbers " +
"in the range [0.0, 1.0]. The distribution \nof " +
"the numbers is proportional to their numeric values. " +
"For example, \nnumbers are generated in the " +
"vicinity of 0.75 with three times the \n" +
"probability of those generated near 0.25." );
Console.WriteLine(
"\nRandom doubles generated with the NextDouble( ) " +
"method:\n" );
// Generate and display [rows * cols] random doubles.
for( int i = 0; i < rows; i++ )
{
for( int j = 0; j < cols; j++ )
Console.Write( "{0,12:F8}", randObj.NextDouble( ) );
Console.WriteLine( );
}
Console.WriteLine(
"\nRandom integers generated with the Next( ) " +
"method:\n" );
// Generate and display [rows * cols] random integers.
for( int i = 0; i < rows; i++ )
{
for( int j = 0; j < cols; j++ )
Console.Write( "{0,12}", randObj.Next( ) );
Console.WriteLine( );
}
Console.WriteLine(
"\nTo demonstrate the proportional distribution, " +
"{0:N0} random \nintegers and doubles are grouped " +
"into {1} equal value ranges. This \n" +
"is the count of values in each range:\n",
runCount, distGroupCount );
Console.WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "Integer Range",
"Count", "Double Range", "Count" );
Console.WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "-------------",
"-----", "------------", "-----" );
// Generate random integers and doubles, and then count
// them by group.
for( int i = 0; i < runCount; i++ )
{
intCounts[ (int)( (double)randObj.Next( ) /
intGroupSize ) ]++;
realCounts[ (int)( randObj.NextDouble( ) *
(double)distGroupCount ) ]++;
}
// Display the count of each group.
for( int i = 0; i < distGroupCount; i++ )
Console.WriteLine(
"{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}",
(int)( (double)i * intGroupSize ),
(int)( (double)( i + 1 ) * intGroupSize - 1.0 ),
intCounts[ i ],
( (double)i ) / (double)distGroupCount,
( (double)( i + 1 ) ) / (double)distGroupCount,
realCounts[ i ] );
}
}
输出:
The derived RandomProportional class overrides the Sample method to generate random numbers in the range [0.0, 1.0). The distribution of the numbers is proportional to the number values. For example, numbers are generated in the vicinity of 0.75 with three times the probability of those generated near 0.25. Random doubles generated with the NextDouble( ) method: 0.59455719 0.17589882 0.83134398 0.35795862 0.91467727 0.54022658 0.93716947 0.54817519 0.94685080 0.93705478 0.18582318 0.71272428 0.77708682 0.95386216 0.70412393 0.86099417 0.08275804 0.79108316 0.71019941 0.84205103 0.41685082 0.58186880 0.89492302 0.73067715 Random integers generated with the Next( ) method: 1570755704 1279192549 1747627711 1705700211 1372759203 1849655615 2046235980 1210843924 1554274149 1307936697 1480207570 1057595022 337854215 844109928 2028310798 1386669369 2073517658 1291729809 1537248240 1454198019 1934863511 1640004334 2032620207 534654791 To demonstrate the proportional distribution, 1,000,000 random integers and doubles are grouped into 10 equal value ranges. This is the count of values in each range: Integer Range Count Double Range Count ------------- ----- ------------ ----- 0- 214748363 10,079 0.00000-0.10000 10,148 214748364- 429496728 29,835 0.10000-0.20000 29,849 429496729- 644245093 49,753 0.20000-0.30000 49,948 644245094- 858993458 70,325 0.30000-0.40000 69,656 858993459-1073741823 89,906 0.40000-0.50000 90,337 1073741824-1288490187 109,868 0.50000-0.60000 110,225 1288490188-1503238552 130,388 0.60000-0.70000 129,986 1503238553-1717986917 149,231 0.70000-0.80000 150,428 1717986918-1932735282 170,234 0.80000-0.90000 169,610 1932735283-2147483647 190,381 0.90000-1.00000 189,813