本文整理汇总了C#中System.Math.Tanh方法的典型用法代码示例。如果您正苦于以下问题:C# Math.Tanh方法的具体用法?C# Math.Tanh怎么用?C# Math.Tanh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Math
的用法示例。
在下文中一共展示了Math.Tanh方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Main
// Example for the hyperbolic Math.Tanh( double ) method.
using System;
class DemoTanh
{
public static void Main()
{
Console.WriteLine(
"This example of hyperbolic Math.Tanh( double )\n" +
"generates the following output." );
Console.WriteLine(
"\nEvaluate these hyperbolic identities " +
"with selected values for X:" );
Console.WriteLine( " tanh(X) == sinh(X) / cosh(X)" );
Console.WriteLine(
" tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X))" );
UseTanh(0.1);
UseTanh(1.2);
UseTanh(4.9);
Console.WriteLine(
"\nEvaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) " +
"/ (1 + tanh(X) * tanh(Y))]" +
"\nwith selected values for X and Y:" );
UseTwoArgs(0.1, 1.2);
UseTwoArgs(1.2, 4.9);
}
// Evaluate hyperbolic identities with a given argument.
static void UseTanh(double arg)
{
double tanhArg = Math.Tanh(arg);
// Evaluate tanh(X) == sinh(X) / cosh(X).
Console.WriteLine(
"\n Math.Tanh({0}) == {1:E16}\n" +
" Math.Sinh({0}) / Math.Cosh({0}) == {2:E16}",
arg, tanhArg, (Math.Sinh(arg) / Math.Cosh(arg)) );
// Evaluate tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X)).
Console.WriteLine(
" 2 * Math.Tanh({0}) /",
arg, 2.0 * tanhArg );
Console.WriteLine(
" (1 + (Math.Tanh({0}))^2) == {1:E16}",
arg, 2.0 * tanhArg / (1.0 + tanhArg * tanhArg ) );
Console.WriteLine(
" Math.Tanh({0}) == {1:E16}",
2.0 * arg, Math.Tanh(2.0 * arg) );
}
// Evaluate a hyperbolic identity that is a function of two arguments.
static void UseTwoArgs(double argX, double argY)
{
// Evaluate tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y)).
Console.WriteLine(
"\n (Math.Tanh({0}) + Math.Tanh({1})) /\n" +
"(1 + Math.Tanh({0}) * Math.Tanh({1})) == {2:E16}",
argX, argY, (Math.Tanh(argX) + Math.Tanh(argY)) /
(1.0 + Math.Tanh(argX) * Math.Tanh(argY)) );
Console.WriteLine(
" Math.Tanh({0}) == {1:E16}",
argX + argY, Math.Tanh(argX + argY));
}
}
输出:
Evaluate these hyperbolic identities with selected values for X: tanh(X) == sinh(X) / cosh(X) tanh(2 * X) == 2 * tanh(X) / (1 + tanh^2(X)) Math.Tanh(0.1) == 9.9667994624955819E-002 Math.Sinh(0.1) / Math.Cosh(0.1) == 9.9667994624955819E-002 2 * Math.Tanh(0.1) / (1 + (Math.Tanh(0.1))^2) == 1.9737532022490401E-001 Math.Tanh(0.2) == 1.9737532022490401E-001 Math.Tanh(1.2) == 8.3365460701215521E-001 Math.Sinh(1.2) / Math.Cosh(1.2) == 8.3365460701215521E-001 2 * Math.Tanh(1.2) / (1 + (Math.Tanh(1.2))^2) == 9.8367485769368024E-001 Math.Tanh(2.4) == 9.8367485769368024E-001 Math.Tanh(4.9) == 9.9988910295055444E-001 Math.Sinh(4.9) / Math.Cosh(4.9) == 9.9988910295055433E-001 2 * Math.Tanh(4.9) / (1 + (Math.Tanh(4.9))^2) == 9.9999999385024030E-001 Math.Tanh(9.8) == 9.9999999385024030E-001 Evaluate [tanh(X + Y) == (tanh(X) + tanh(Y)) / (1 + tanh(X) * tanh(Y))] with selected values for X and Y: (Math.Tanh(0.1) + Math.Tanh(1.2)) / (1 + Math.Tanh(0.1) * Math.Tanh(1.2)) == 8.6172315931330645E-001 Math.Tanh(1.3) == 8.6172315931330634E-001 (Math.Tanh(1.2) + Math.Tanh(4.9)) / (1 + Math.Tanh(1.2) * Math.Tanh(4.9)) == 9.9998993913939649E-001 Math.Tanh(6.1) == 9.9998993913939649E-001