本文整理汇总了C#中System.Math.Exp方法的典型用法代码示例。如果您正苦于以下问题:C# Math.Exp方法的具体用法?C# Math.Exp怎么用?C# Math.Exp使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Math
的用法示例。
在下文中一共展示了Math.Exp方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Main
// Example for the Math.Exp( double ) method.
using System;
class ExpDemo
{
public static void Main()
{
Console.WriteLine(
"This example of Math.Exp( double ) " +
"generates the following output.\n" );
Console.WriteLine(
"Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
"with selected values for X:" );
UseLnExp(0.1);
UseLnExp(1.2);
UseLnExp(4.9);
UseLnExp(9.9);
Console.WriteLine(
"\nEvaluate these identities with " +
"selected values for X and Y:" );
Console.WriteLine( " (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
Console.WriteLine( " (e ^ X) ^ Y == e ^ (X * Y)" );
Console.WriteLine( " X ^ Y == e ^ (Y * ln(X))" );
UseTwoArgs(0.1, 1.2);
UseTwoArgs(1.2, 4.9);
UseTwoArgs(4.9, 9.9);
}
// Evaluate logarithmic/exponential identity with a given argument.
static void UseLnExp(double arg)
{
// Evaluate e ^ ln(X) == ln(e ^ X) == X.
Console.WriteLine(
"\n Math.Exp(Math.Log({0})) == {1:E16}\n" +
" Math.Log(Math.Exp({0})) == {2:E16}",
arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
}
// Evaluate exponential identities that are functions of two arguments.
static void UseTwoArgs(double argX, double argY)
{
// Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
Console.WriteLine(
"\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" +
"\n Math.Exp({0} + {1}) == {3:E16}",
argX, argY, Math.Exp(argX) * Math.Exp(argY),
Math.Exp(argX + argY) );
// Evaluate (e ^ X) ^ Y == e ^ (X * Y).
Console.WriteLine(
" Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
"\n Math.Exp({0} * {1}) == {3:E16}",
argX, argY, Math.Pow(Math.Exp(argX), argY),
Math.Exp(argX * argY) );
// Evaluate X ^ Y == e ^ (Y * ln(X)).
Console.WriteLine(
" Math.Pow({0}, {1}) == {2:E16}" +
"\nMath.Exp({1} * Math.Log({0})) == {3:E16}",
argX, argY, Math.Pow(argX, argY),
Math.Exp(argY * Math.Log(argX)) );
}
}
输出:
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X: Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001 Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001 Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000 Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000 Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000 Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000 Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000 Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000 Evaluate these identities with selected values for X and Y: (e ^ X) * (e ^ Y) == e ^ (X + Y) (e ^ X) ^ Y == e ^ (X * Y) X ^ Y == e ^ (Y * ln(X)) Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000 Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000 Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000 Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000 Math.Pow(0.1, 1.2) == 6.3095734448019331E-002 Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002 Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002 Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002 Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002 Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002 Math.Pow(1.2, 4.9) == 2.4433636334442981E+000 Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000 Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006 Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006 Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021 Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021 Math.Pow(4.9, 9.9) == 6.8067718210957060E+006 Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006