本文整理汇总了C#中System.Vector2.Dot方法的典型用法代码示例。如果您正苦于以下问题:C# Vector2.Dot方法的具体用法?C# Vector2.Dot怎么用?C# Vector2.Dot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Vector2
的用法示例。
在下文中一共展示了Vector2.Dot方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Project
/// <summary>
///
/// </summary>
/// <param name="vertices"></param>
/// <param name="axis"></param>
/// <returns></returns>
public Projection Project(Vector2[] vertices, Vector2 axis)
{
double min = axis.Dot(vertices[0]);
double max = min;
for (int i = 1; i < vertices.Length; i++)
{
// NOTE: the axis must be normalized to get accurate projections
double p = axis.Dot(vertices[i]);
if (p < min)
{
min = p;
}
else if (p > max)
{
max = p;
}
}
return new Projection(min, max);
}
示例2: Support
public static MinkowskiDiff Support(Entity Object1, Entity Object2, Vector2 axis)
{
Matrix3x3 transform1, transform2;
{
Matrix3x3 rotation1 = Matrix3x3.RotationZ(-Object1.Orientation);
Matrix3x3 translation1 = new Matrix3x3(1, 0, Object1.Position.X, 0, 1, Object1.Position.Y, 0, 0, 1);
transform1 = Matrix3x3.Multiply(translation1, rotation1);
Matrix3x3 rotation2 = Matrix3x3.RotationZ(-Object2.Orientation);
Matrix3x3 translation2 = new Matrix3x3(1, 0, Object2.Position.X, 0, 1, Object2.Position.Y, 0, 0, 1);
transform2 = Matrix3x3.Multiply(translation2, rotation2);
}
float max1 = axis.Dot(Object1.Shape.Vertices[0].Transform(transform1));
Vector2 maxp1 = Object1.Shape.Vertices[0].Transform(transform1);
float max2 = axis.Dot(Object2.Shape.Vertices[0].Transform(transform2));
Vector2 maxp2 = Object2.Shape.Vertices[0].Transform(transform2);
for (int i = 1; i < Object1.Shape.Vertices.Length; i++)
{
float dot = axis.Dot(Object1.Shape.Vertices[i].Transform(transform1));
if (max1 < dot)
{
max1 = dot;
maxp1 = Object1.Shape.Vertices[i].Transform(transform1);
}
}
for (int i = 1; i < Object2.Shape.Vertices.Length; i++)
{
float dot = axis.Dot(Object2.Shape.Vertices[i].Transform(transform2));
if (max2 > dot)
{
max2 = dot;
maxp2 = Object2.Shape.Vertices[i].Transform(transform2);
}
}
return new MinkowskiDiff(maxp1, maxp2);
}
示例3: CalculateJ
public void CalculateJ()
{
PhysicsEntity p1 = (PhysicsEntity)Object1;
PhysicsEntity p2 = (PhysicsEntity)Object2;
Vector2 p = (Point1 + Point2) / 2;
float e = 0.1f; //Restitution
rAP = (p - p1.Position).Perpendicular();
rBP = (p - p2.Position).Perpendicular();
Vector2 vAP = p1.Velocity + p1.Omega * rAP;
Vector2 vBP = p2.Velocity + p2.Omega * rBP;
Vector2 vAB = vAP - vBP;
float j = -(1 + e) * vAB.Dot(N);
float j1 = N.Dot(N) * (p1.MassInv + p2.MassInv);
float j2 = (float)Math.Pow(rAP.Dot(N), 2) * p1.InertiaInv;
float j3 = (float)Math.Pow(rBP.Dot(N), 2) * p2.InertiaInv;
//j /= Data.N.Dot(Data.N) * (MassInv + p2.MassInv) + (float)Math.Pow(rAP.Dot(Data.N), 2) * InertiaInv + (float)(Math.Pow(rBP.Dot(Data.N), 2) * p2.InertiaInv);
J = j / (j1 + j2 + j3);
}
示例4: IntersectionDetailsParallel
private static IResult IntersectionDetailsParallel(Vector2 d0, Vector2 d1, Vector2 e, Point2 a, Point2 b, Point2 c, Point2 d) {
Contract.Ensures(Contract.Result<IResult>() != null);
var squareMagnitude0 = d0.GetMagnitudeSquared();
var d0DotD1 = d0.Dot(d1);
var s1 = d0.Dot(e) / squareMagnitude0;
var s2 = s1 + (d0DotD1 / squareMagnitude0);
double sMin, sMax;
if (s1 <= s2) {
sMin = s1;
sMax = s2;
}
else {
sMin = s2;
sMax = s1;
}
if (sMax < 0.0 || sMin > 1.0)
return DefaultNoIntersection; // no intersection
if (sMax == 0.0)
return new PointResult(a, 0.0, a == c ? 0.0 : 1.0); // the start point
if (sMin == 1.0)
return new PointResult(b, 1.0, b == c ? 0.0 : 1.0); // the end point
PointResult resultA;
PointResult resultB;
double squareMagnitude1;
if (sMin <= 0.0 && sMax >= 1.0) {
squareMagnitude1 = d1.GetMagnitudeSquared();
var t1 = d1.Dot(e.GetNegative()) / squareMagnitude1;
resultA = new PointResult(a, 0.0, t1);
resultB = new PointResult(b, 1.0, t1 + (d0DotD1 / squareMagnitude1));
}
else if (sMin >= 0.0 && sMax <= 1.0) {
// reuse s1 and s2 from above
resultA = new PointResult(c, s1, 0.0);
resultB = new PointResult(d, s2, 1.0);
}
else {
squareMagnitude1 = d1.GetMagnitudeSquared();
var p1 = (0.0 < sMin) ? a + (d0.GetScaled(sMin)) : a;
var p2 = a + (d0.GetScaled(sMax < 1.0 ? sMax : 1.0));
var pd = p2 - p1;
s1 = d0.Dot(p1 - a) / squareMagnitude0;
s2 = s1 + (d0.Dot(pd) / squareMagnitude0);
var t1 = d1.Dot(p1 - c) / squareMagnitude1;
resultA = new PointResult(p1, s1, t1);
resultB = new PointResult(p2, s2, t1 + (d1.Dot(pd) / squareMagnitude1));
}
return new SegmentResult(resultA, resultB);
}
示例5: dotProductExtract
public List<int> dotProductExtract(List<Vector2> xCart, double bAngle)
{
List<double> bAngles1 = new List<double>();
List<double> bAngles2 = new List<double>();
List<int> iCorners = new List<int>();
for (int i = 2; i < ibook.Count - 2; i++)
{
Vector2 a = new Vector2(xCart[i + 1].Y - xCart[i].Y, xCart[i + 1].X - xCart[i].X);
Vector2 b = new Vector2(xCart[i - 1].Y - xCart[i].Y, xCart[i - 1].X - xCart[i].X);
Vector2 c = new Vector2(xCart[i + 2].Y - xCart[i].Y, xCart[i + 2].X - xCart[i].X);
Vector2 d = new Vector2(xCart[i - 2].Y - xCart[i].Y, xCart[i - 2].X - xCart[i].X);
bAngles1.Add(Math.Acos(a.Dot(b) / (a.Length * b.Length)));
bAngles2.Add(Math.Acos(c.Dot(d) / (c.Length * d.Length)));
if ((bAngles1[i - 2] < bAngle) && (bAngles2[i - 2] < bAngle))
iCorners.Add(i);
}
return iCorners;
}
示例6: BuildProbabilities
public void BuildProbabilities( double _CameraTheta, ParametrizedSpace _Probas )
{
Vector ViewTS = new Vector( Math.Sin( _CameraTheta ), 0.0, Math.Cos( _CameraTheta ) );
Vector LightTS = new Vector( 0, 0, 0 );
double L = 2.0 * _CameraTheta / Math.PI;
Vector2 Center = new Vector2( 0, L ); // We choose the center to be (0,ThetaD0)
// Vector2 U = new Vector2( L, -L ); // U direction goes down to (ThetaH0,0)
Vector2 U = new Vector2( 0.5 / L, -0.5 / L ); // U direction goes down to (ThetaH0,0)
// Vector2 V = new Vector2( 1-L, 1-L ); // V direction goes up toward (PI/2, PI/2) (singularity when _CameraTheta=PI/2 !)
// Vector2 V = new Vector2( 0.5 / (1-L), 0.5 / (1-L) ); // V direction goes up toward (PI/2, PI/2) (singularity when _CameraTheta=PI/2 !)
Vector2 V = new Vector2( 1.0 / (1-L), 1.0 / (1-L) ); // V direction goes up toward (PI/2, PI/2) (singularity when _CameraTheta=PI/2 !)
double Normalizer = 100.0 / (SAMPLES_COUNT_PHI * SAMPLES_COUNT_THETA);
Vector2 ST = new Vector2( 0, 0 );
Vector2 Delta = new Vector2( 0, 0 );
Vector2 UV = new Vector2( 0, 0 );
_Probas.Clear();
int ScaleAngle = Math.Min( 89, (int) (90 * L) );
for ( var Y=0; Y < SAMPLES_COUNT_PHI; Y++ )
{
var PhiL = Math.PI * ((double) Y / SAMPLES_COUNT_PHI - 0.5);
var CosPhiL = Math.Cos( PhiL );
var SinPhiL = Math.Sin( PhiL );
for ( var X=0; X < SAMPLES_COUNT_THETA; X++ )
{
// var ThetaL = 0.5 * Math.PI * X / SAMPLES_COUNT_THETA;
var ThetaL = Math.Asin( Math.Sqrt( (double) X / SAMPLES_COUNT_THETA ) ); // Account for cosine weight of samples
var CosThetaL = Math.Cos( ThetaL );
var SinThetaL = Math.Sin( ThetaL );
LightTS.x = SinThetaL * SinPhiL;
LightTS.y = SinThetaL * CosPhiL;
LightTS.z = CosThetaL;
var Half = (ViewTS + LightTS).Normalize();
var ThetaH = Math.Acos( Half.z );
var ThetaD = Math.Acos( ViewTS.Dot( Half ) );
// Normalize in ST space
ST.x = 2*ThetaH/Math.PI;
ST.y = 2*ThetaD/Math.PI;
// Transform into UV space
Delta = ST - Center;
UV.x = Delta.Dot( U );
UV.y = Delta.Dot( V );
// Find scaling factor
int ScaleX = Math.Max( 0, Math.Min( PROBA_ARRAY_SIZE-1, (int) (PROBA_ARRAY_SIZE * UV.x) ) );
double Scale = m_Scales[ScaleAngle,ScaleX];
UV.y *= Scale;
_Probas.Accumulate( UV, Normalizer );
}
}
}
示例7: Trace
/// <summary>
/// Performs deviation analysis on a test's data.
/// </summary>
private void Trace(int t, int dt, short x, short y, short p)
{
/*
* Assumptions:
* TestData origin matches Path origin.
* Axis follows standard .NET drawing conventions:
* X increases from left to right
* Y increases from top to bottom
*/
double MinDeviation = double.PositiveInfinity;
Vector2 SamplePoint = new Vector2(x, y),
MinDistance = new Vector2(double.PositiveInfinity, double.PositiveInfinity);
foreach(PointF[] subpath in Paths)
{
for(int k = 1; k < subpath.Length; k++)
{
//compute the distance vector to the current line segment
Vector2 Distance = PointLineDistance(subpath[k - 1], subpath[k], SamplePoint);
double DistanceNorm = Distance.Norm();
if(DistanceNorm < MinDeviation)
{
MinDeviation = DistanceNorm;
MinDistance = Distance;
}
}
}
//we consider the intended point as the point nearest the sample
this[AnalysisMetric.Deviation].Add(MinDeviation);
//compute the sign of the cos(theta)
//here theta is the angle between distance vector and mean-origin vector
switch(Math.Sign(MinDistance.Dot(-1 * SamplePoint)))
{
case -1: //pi/2 < theta < pi; distance vector points away from origin
this[AnalysisMetric.InnerDeviation].Add(MinDeviation);
break;
case 1: //0 < theta < pi/2; distance vector points towards origin
this[AnalysisMetric.OuterDeviation].Add(MinDeviation);
break;
}
}